logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

머신러닝 리스크 관리 with 파이썬

머신러닝 리스크 관리 with 파이썬

(안정성과 신뢰성 높은 견고한 모델을 구축하는 방법)

패트릭 홀, 제임스 커티스, 파룰 판데이 (지은이), 윤덕상, 이상만, 김경환, 김광훈, 장기식 (옮긴이)
한빛미디어
42,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
37,800원 -10% 0원
2,100원
35,700원 >
37,800원 -10% 0원
카드할인 10%
3,780원
34,020원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 30,240원 -10% 1510원 25,700원 >

책 이미지

머신러닝 리스크 관리 with 파이썬
eBook 미리보기

책 정보

· 제목 : 머신러닝 리스크 관리 with 파이썬 (안정성과 신뢰성 높은 견고한 모델을 구축하는 방법)
· 분류 : 국내도서 > 컴퓨터/모바일 > OS/Networking > 네트워크 보안/해킹
· ISBN : 9791169212380
· 쪽수 : 552쪽
· 출판일 : 2024-05-10

책 소개

실무자가 AI 모델 위험관리 프로세스를 제대로 이해하고, 일반적인 파이썬 도구를 사용해 설명 가능한 모델을 학습하며 안전성, 편향 관리, 보안, 프라이버시 문제를 관리하는 새로운 방법을 제공한다. ML의 리스크를 제거하는 미묘한 접근 방식을 취함으로써, 책임감 있고 지속 가능한 방식으로 ML 시스템을 성공적으로 배포할 수 있는 귀중한 리소스를 독자들에게 제공한다.

목차

[1부_ 인공지능 위험관리의 이론과 실제 적용 사례]

1장 현대의 머신러닝 위험관리
_1.1 법률 및 규제 환경 개요
_1.2 권위 있는 모범사례
_1.3 AI 사고
_1.4 머신러닝 위험관리를 위한 문화적 역량
_1.5 머신러닝 위험관리를 위한 조직 프로세스
_1.6 사례 연구: 질로우 아이바잉 사업의 흥망성쇠
_1.7 참고 자료

2장 해석 및 설명 가능한 머신러닝
_2.1 해석 가능성 및 설명 가능성에 관한 중요 아이디어
_2.2 설명 가능한 모델
_2.3 사후 설명
_2.4 실무에서 사후 설명의 고질적 문제
_2.5 설명 가능한 모델과 사후 설명의 결합
_2.6 사례 연구: 알고리즘 채점
_2.7 참고 자료

3장 안전성과 성능을 높이는 머신러닝 시스템 디버깅
_3.1 훈련
_3.2 모델 디버깅
_3.3 배포
_3.4 사례 연구: 자율주행차 사망 사고
_3.5 참고 자료

4장 머신러닝 편향관리
_4.1 ISO 및 NIST의 편향 정의
_4.2 미국의 머신러닝 편향에 대한 법적 개념
_4.3 머신러닝 시스템의 편향을 경험하는 경향이 있는 사람
_4.4 사람들이 경험하는 피해
_4.5 편향 테스트
_4.6 편향 완화
_4.7 사례연구: 편향 버그 바운티
_4.8 참고 자료

5장 머신러닝 보안
_5.1 보안 기초
_5.2 머신러닝 공격
_5.3 일반적인 머신러닝 보안 문제
_5.4 대응책
_5.5 사례 연구: 실제 우회 공격
_5.6 참고 자료

[2부_ 인공지능 위험관리 실행하기]

6장 설명 가능한 부스팅 머신과 XGBoost 설명
_6.1 개념 복습: 머신러닝 투명성
_6.2 일반화가법모형 계열의 설명 가능한 모델
_6.3 제약조건과 사후 설명이 있는 XGBoost
_6.4 참고 자료

7장 파이토치 이미지 분류기
_7.1 흉부 엑스레이 분류 설명
_7.2 개념 복습: 설명 가능한 모델과 사후 설명 기법
_7.3 설명 가능한 모델
_7.4 파이토치 이미지 분류기 훈련 및 설명
_7.5 결론
_7.6 참고 자료

8장 XGBoost 모델 선택 및 디버깅
_8.1 개념 복습: 머신러닝 디버깅
_8.2 더 좋은 XGBoost 모델 선택하기
_8.3 XGBoost 민감도 분석
_8.4 XGBoost 잔차 분석
_8.5 선택한 모델 개선하기
_8.6 결론
_8.7 참고 자료

9장 파이토치 이미지 분류기 디버깅
_9.1 개념 복습: 딥러닝 디버깅
_9.2 파이토치 이미지 분류기 디버깅하기
_9.3 결론
_9.4 참고 자료

10장 XGBoost를 사용한 편향 테스트 및 개선
_10.1 개념 복습: 편향관리
_10.2 모델 훈련
_10.3 모델의 편향 평가
_10.4 편향 개선
_10.5 결론
_10.6 참고 자료

11장 레드 팀 XGBoost
_11.1 개념 복습
_11.2 모델 훈련
_11.3 레드 팀 공격
_11.4 결론
_11.5 참고 자료

[3부_ 결론]

12장 고위험 머신러닝에서 성공하는 방법
_12.1 프로젝트 참여 대상
_12.2 과학 대 공학
_12.3 발표된 결과와 주장에 대한 평가
_12.4 외부 표준 적용하기
_12.5 상식적인 위험완화
_12.6 결론
_12.7 참고 자료

부록
찾아보기

저자소개

제임스 커티스 (지은이)    정보 더보기
솔레아 에너지(Solea Energy)의 정량 분석가(quantitative researcher)로, 통계 예측을 사용해 미국 전력망의 탄소 배출을 감소하는 데 주력하고 있다. 이전에는 금융 서비스 조직, 보험사, 규제기관 및 의료 서비스 제공업체에 더 공정한 인공지능 및 머신러닝 모델을 구축하는 데 도움을 주는 컨설턴트로 활동했다. 콜로라도 광업대학교(Colorado School of Mines)에서 수학 석사학위를 받았다.
펼치기
패트릭 홀 (지은이)    정보 더보기
BNH.AI의 수석 과학자로 포춘 500대 기업과 최첨단 스타트업에 AI 위험에 관해 자문을 제공하고, NIST의 인공지능 위험관리 프레임워크를 지원하는 연구를 수행하고 있다. 조지 워싱턴 경영대학원의 의사결정과학과 객원 교수로 데이터 윤리와 비즈니스 분석, 머신러닝 강의를 진행하고 있다. BNH를 공동 설립하기 전에는 H2O.ai에서 책임 있는 AI 분야를 이끌면서 머신러닝의 설명 가능성 및 편향성 완화를 위한 세계 최초의 상용 응용 프로그램을 개발했다. 또한 SAS 연구소에서 글로벌 고객 지원 업무와 R&D 업무를 담당했다. 일리노이 대학교에서 계산화학을 전공한 후 노스캐롤라이나 주립대학교의 고급 분석 연구소를 졸업했다. 미국 과학, 공학 및 의학 아카데미(National Academies of Science, Engineering, and Medicine), ACM SIGKDD, 합동 통계 회의(Joint Statistical Meetings)에서 설명 가능한 인공지능과 관련 주제로 발표했다. McKinsey.com, 오라일리 레이더(O’Reilly Radar), 톰슨 로이터 규제 인텔리전스(Thompson Reuters Regulatory Intelligence) 등의 매체에 글을 기고했으며, 그의 기술 성과는 『포춘(Fortune)』, 『와이어드(Wired)』, 『인포월드(InfoWorld)』, 『테크크런치(TechCrunch)』 등에 소개되었다.
펼치기
파룰 판데이 (지은이)    정보 더보기
전기공학을 전공했으며 현재 H2O.ai에서 수석 데이터과학자로 근무하고 있다. 이전에는 Weights & Biases에서 머신러닝 엔지니어로 근무했다. 또한 캐글 노트북 부문의 그랜드 마스터이며, 2019년에는 링크드인(LinkedIn) 소프트웨어 개발 부문에서 최고 목소리(Top Voices) 중 한 명으로 선정되었다. 다양한 출판물에 데이터과학 및 소프트웨어 개발을 주제로 한 여러 기사를 기고했으며, 책임 있는 AI와 관련된 주제에 대해 강연하고 멘토링 및 워크숍을 진행하는 등 활발하게 활동하고 있다.
펼치기
장기식 (옮긴이)    정보 더보기
경희대학교에서 대수학을 전공했으며 고려대학교 정보보호대학원에서 박사 학위를 취득했다. 이후 약 10년간 경찰청 사이버안전국 디지털포렌식센터에서 디지털포렌식 업무를 담당했다. 경찰대학 치안정책연구소에서 데이터 분석을 접한 이후 데이터 분석을 기반으로 한 머신러닝 기술을 연구했고 이 경험을 바탕으로 스타트업에서 인공지능 기반 데이터 분석 업무부터 CCTV용 영상 분석에 이르기까지 다양한 머신러닝 및 인공지능 업무를 수행했다. 현재 모빌리티 보안 전문 업체인 ㈜시옷의 CTO로서 자동차 사이버 보안 및 데이터 분석 솔루션 개발 및 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003), 『머신러닝 리스크 관리 with 파이썬』(한빛미디어, 2024)을 비롯해 에이콘출판사에서 출간한 『EnCase 컴퓨터 포렌식』(2015), 『인텔리전스 기반 사고 대응』(2019), 『적대적 머신러닝』(2020), 『사이버 보안을 위한 머신러닝 쿡북』(2021), 『양자 암호 시스템의 시작』(2021), 『스크래치로 배워 보자! 머신러닝』(2022), 『Pandas를 이용한 데이터 분석 실습 2/e』(2022), 『그래프 머신러닝』(2023)이 있다.
펼치기
김경환 (옮긴이)    정보 더보기
개발자의 길로 들어선 이후 강산이 세 번 바뀌었고 이제 네 번째도 중반을 넘어섰다. 코딩 자체도 좋아하지만, 다양한 분야의 전문가들로부터 요구사항을 듣고 분석하면서 새로운 지식을 습득하고 체계화하는 것을 즐긴다. 첫 직장에서 경험한 데이터베이스를 시작으로 데이터웨어하우스, 검색엔진, 빅데이터 그리고 인공지능에 이르기까지 여정에서 얻게 된 ‘살아 숨 쉬는 지혜’를 DIKW 이론을 빌려 주변에 설파하고 있다. ‘배운 것 남 주자’를 실천하기 위해 한양대학교 대학원과 학부에서 겸임교수로 ‘새로운 데이터역학을 주도하는 빅데이터시스템과 데이터과학’, ‘자료구조와 알고리즘’을 가르치고 있다. 반도체 분야에 적용한 텍스트 마이닝 기반의 DLP 솔루션을 개발했고, ITS를 위한 빅데이터 플랫폼을 설계 및 구축했다. 현재는 모빌리티 보안 전문업체인 ㈜시옷에서 스마트카 보안의 핵심 기술인 vPKI와 이를 활용한 F-OTA, PnC 등의 솔루션 고도화에 매진하고 있다. 번역서로는 『Pandas를 이용한 데이터 분석 실습 2/e』(에이콘출판사, 2022)이 있다.
펼치기
윤덕상 (옮긴이)    정보 더보기
고려대학교 정보보호대학원에서 정보보호 분야 박사학위를 취득했다. 삼성그룹, 롯데그룹, KT 그룹 등 대한민국 전자, 유통, 통신 핵심 대기업과 SECUI, Fasoo 등 정보보호 전문업체를 두루 거치면서 34년간 정보보호 실무자부터 정보보호최고책임자(CISO)에 이르기까지 정보보호 분야의 핵심 업무를 두루 경험한 정보보호 전문가다. 2015년 ISC2 2015 Asia Pacific ISLA Award, 2016년 제15회 K-ICT 정보보호대상 특별상, 2018년 제10회 SECURE KOREA 2018 대상, 2020년 소프트웨어 연구개발(R&D) 우수성과 장관상을 수상했다. 현재 모빌리티 보안 전문업체인 (주)시옷에서 부사장으로 근무하며 성균관대학교 과학수사학과 겸임교수, 한국정보보호학회 부회장, 한국디지털포렌식학회 이사 등 정보보호분야에서 활발한 활동을 이어가고 있다.
펼치기
이상만 (옮긴이)    정보 더보기
동국대학교 전자계산학과를 졸업하고 삼성 SDS, KDB산업은행, NH농협손해보험 등 대기업에서 12년간 정보보호 운영, 기획 등의 실무를 역임했다. 삼성그룹 정보보호 전문업체인 SECUI 등 정보보호 솔루션 업체에서 16년간 네트워크 기반 취약점점검 도구, 방화벽, PC 개인정보보호 솔루션, Endpoint 정보유출탐지 솔루션을 개발한 정보보호 분야 개발 전문가다. 현재 모빌리티 보안 전문업체인 ㈜시옷에서 미래 자동차 분야에서 국제표준 Smart 충전방식인 Plug&Charge(PnC) 보안인증 솔루션, Automotive 취약점 점검 솔루션 등의 개발을 담당하는 등 현역으로 활발한 연구개발 활동을 펼치고 있다.
펼치기
김광훈 (옮긴이)    정보 더보기
고려대학교 정보보호대학원에서 석사과정을 졸업하고 성균관대학교 일반대학원 컴퓨터공학과에서 박사과정을 수료했다. 글로벌 컨설팅펌인 PwC와 Deloitte를 거쳐, 일본에서 NHN 그룹 보안총괄을 지냈고, 현재 한국의 IT기업에서 CISO/CPO로 재직 중이다. 또한 대통령직속 디지털플랫폼정부위원회 보안분과 전문위원으로도 활동하고 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169218153