logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

그림과 수식으로 배우는 통통 머신러닝

그림과 수식으로 배우는 통통 머신러닝

스기야마 마사시 (지은이), 심효섭 (옮긴이)
제이펍
23,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

그림과 수식으로 배우는 통통 머신러닝
eBook 미리보기

책 정보

· 제목 : 그림과 수식으로 배우는 통통 머신러닝 
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791185890906
· 쪽수 : 252쪽
· 출판일 : 2017-09-11

책 소개

다양한 학습 기법을 최소제곱 학습에 기초하여 소개한다. 최소제곱 학습만 확실히 이해해 둔다면, 중간 규모 정도의 데이터에 대한 고도의 학습 기법을 적용할 수 있다. 최소제곱 학습을 기반으로 한 MATLAB 구현 예를 제공하므로 실험 결과를 간단히 재현해 볼 수 있다.

목차

PART 1 시작하며 1
CHAPTER 1 머신러닝이란? 2
1.1 학습의 종류 3
1.2 머신러닝 과업들 5
1.3 머신러닝의 접근법 8

CHAPTER 2 학습 모델 12
2.1 선형 모델 12
2.2 커널 모델 15
2.3 계층 모델 18

PART 2 지도 학습 기반 회귀 21
CHAPTER 3 최소제곱 학습 22
3.1 최소제곱 학습 22
3.2 최소제곱해의 성질 25
3.3 대규모 데이터를 다루기 위한 학습 알고리즘 27

CHAPTER 4 제약 최소제곱 학습 32
4.1 부분 공간 제약 최소제곱 학습 33
4.2 제약 최소제곱 학습 34
4.3 모델 선택 38

CHAPTER 5 희소 학습 44
5.1 제약 최소제곱 학습 44
5.2 제약 최소제곱 학습의 해를 구하는 방법 46
5.3 희소 학습에 의한 특징 선택 51
5.4 제약 최소제곱 학습 52
5.5 제약 최소제곱 학습 53

CHAPTER 6 로버스트 학습 56
6.1 손실 최소화 학습 57
6.2 후버 손실 최소화 학습 59
6.3 튜키 손실 최소화 학습 64
6.4 제약 후버 손실 최소화 학습 66

PART 3 지도 학습 기반 분류 71
CHAPTER 7 최소제곱 학습 기반 분류 72
7.1 최소제곱 분류 72
7.2 0/1 손실과 마진 75
7.3 다중 클래스 78

CHAPTER 8 서포트 벡터 분류 81
8.1 마진 최대화 분류 81
8.2 서포트 벡터 분류기의 해를 구하는 방법 84
8.3 희소성 87
8.4 커널 트릭을 이용한 비선형화 89
8.5 힌지 손실 최소화 학습 관점에서의 해석 91
8.6 램프 손실을 이용한 로버스트 학습 94

CHAPTER 9 앙상블 분류 99
9.1 결정주 분류 100
9.2 배깅 102
9.3 부스팅 106

CHAPTER 10 확률적 분류 114
10.1 로지스틱 회귀 114
10.2 최소제곱 확률적 분류 119

CHAPTER 11 연속열 데이터의 분류 124
11.1 연속열 데이터의 모형화 124
11.2 조건부 확률장 모형의 학습 129
11.3 조건부 확률장 모형을 이용한 레이블 연속열 예측 131

PART 4 비지도 학습 133
CHAPTER 12 이상 검출 134
12.1 국소 이상 인자 134
12.2 서포트 벡터 이상 검출 137
12.3 밀도비 기반 이상 검출 140

CHAPTER 13 비지도 기반 차원 축소 145
13.1 선형 차원 축소의 개요 146
13.2 주성분 분석 147
13.3 국소성 보존 사영 150
13.4 커널 주성분 분석 153
13.5 라플라스 고유사상 156

CHAPTER 14 클러스터링 159
14.1 K-평균 클러스터링 159
14.2 커널 K-평균 클러스터링 161
14.3 스펙트럴 클러스터링 163
14.4 파라미터의 자동 결정 165

PART 5 심화 학습 171
CHAPTER 15 온라인 학습 172
15.1 수동 공격 학습 172
15.2 적응 규제화 학습 179

CHAPTER 16 반지도 학습 184
16.1 입력 데이터가 이루는 다양체 구조의 활용 184
16.2 라플라스 규제화 최소제곱 학습의 해를 구하는 방법 187
16.3 라플라스 규제화에 대한 해석 189

CHAPTER 17 지도 학습 기반 차원 축소 191
17.1 분류 문제에 대한 판별 분석 191
17.2 충분 차원 축소 198

CHAPTER 18 전이 학습 200
18.1 공변량 시프트 상황에서의 전이 학습 200
18.2 클래스 밸런스 변화 상황에서의 전이 학습 208

CHAPTER 19 멀티 태스크 학습 215
19.1 최소제곱 회귀를 이용한 멀티 태스크 학습 215
19.2 최소제곱 확률적 분류기를 이용한 멀티 태스크 학습 218
19.3 다차원 출력 함수의 학습 220

PART 6 마무리하며 225
CHAPTER 20 앞으로의 전망 226

참고문헌 230
찾아보기 231

저자소개

스기야마 마사시 (지은이)    정보 더보기
1974년 오사카에서 태어났다. 도쿄공업대학 공학부 정보공학과를 졸업하고(1997년) 동(同)대학 박사과정을 수료하였으며(2001년), 준교수로도 지냈다(2007년). 현재는 도쿄대학 대학원 신영역창성과학 연구과 복잡이공학 전공교수이며, 머신러닝 이론 연구 및 알고리즘 개발, 신호 이미지 처리 등에 대한 응용 연구를 계속하고 있다. 2011년에 정보처리학회 나가오마코토 기념특별상을 수상하기도 했다. 저서로는 《統計的機械学習(통계적 머신러닝)》(OHM), 《Density Ratio Estimation in Machine Learning》(Cambridge University Press) 등이 있으며, 크리스토퍼 비숍의 《Pattern Recognition and Machine Learning》 등을 번역하였다.
펼치기
심효섭 (옮긴이)    정보 더보기
연세대학교 문헌정보학과를 졸업하고 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하면서 개발을 시작했다. 네이버에서 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에 머신러닝 공부도 꾸준히 하고 있다. 최근 관심사는 회사에 속하지 않고도 지속 가능한 삶이다. 옮긴 책으로는 『엔지니어를 위한 블록체인 프로그래밍』, 『비전 시스템을 위한 딥러닝』, (이상 한빛미디어), 『파이썬으로 시작하는 컴퓨터 과학 입문』(인사이트), 『그림과 실습으로 배우는 도커 & 쿠버네티스 (위키북스), 『도커 교과서』, 『쿠버네티스 교과서』(이상 길벗) 등이 있다.
펼치기

책속에서



제약 최소제곱 학습과 교차 확인법을 함께 사용하는 것은 실제 응용에서 매우 유용한 회귀 방법이다. 그러나 파라미터 수가 많으면, 해나 학습한 함수의 출력값을 계산하는 데 시간이 많이 걸리는 문제가 있다. 이번 장에서는 파라미터의 대부분이 0으로 학습되는 것이 특징인 희소 학습을 소개한다. 파라미터 대부분이 0이 되므로 해나 학습한 함수의 출력을 빠르게 계산하는 데 도움이 된다.


실제 문제에서 대규모의 훈련 표본을 다룰 때에는 많든 적든 어느 정도의 이상값이 포함되어 있다고 보는 것이 당연하다. 이 때문에 최소제곱 학습은 이런 경우에는 신뢰성이 낮다고 할 수 있다. 통계학이나 머신러닝 분야에서는 이상값에 대한 견고성(안정성)을 로버스트성(robustness)이라고 부른다. 훈련 표본에 이상값이 섞여 있을 때에는 이상값을 처음부터 제거하고 학습을 실시하거나 이상값을 그대로 둔 채 영향을 덜 받는 방향으로 학습을 수행하는 것이 바람직하다. 전자에 해당하는 이상값 소거에 대해서는 12장에서 설명하도록 하고, 이번 장에서는 이상값에 대해 높은 안정성을 갖는 로버스트 학습을 소개하겠다.


이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책