책 이미지
책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791190665612
· 쪽수 : 440쪽
· 출판일 : 2020-11-17
책 소개
목차
PART I 기초 1
CHAPTER 1 강화학습이란? 3
1.1 심층 강화학습에서 '심층'의 의미 4
1.2 강화학습 6
1.3 동적 계획법과 몬테카를로 방법 9
1.4 강화학습의 틀 12
1.5 강화학습으로 할 수 있는 일 16
1.6 왜 심층 강화학습인가? 18
1.7 이 책의 주요 설명 수단: 끈 그림 21
1.8 앞으로의 여정 22
요약 24
CHAPTER 2 강화학습 문제의 모형화: 마르코프 결정 과정 25
2.1 끈 그림과 이 책의 교육 방식 25
2.2 여러 팔 강도 문제의 해법 30
2.3 여러 팔 강도 문제를 광고 배치 최적화에 적용 41
2.4 PyTorch로 신경망 만들기 43
2.5 문맥적 강도 문제의 해법 47
2.6 마르코프 성질 52
2.7 향후 보상의 예측: 가치와 정책 함수 55
요약 59
CHAPTER 3 가장 나은 동작의 선택: 심층 Q 신경망(DQN) 61
3.1 Q 함수 62
3.2 Q 학습 개요 64
3.3 파국적 망각 방지: 경험 재현 85
3.4 목표망을 이용한 안정성 개선 92
3.5 정리 99
요약 102
CHAPTER 4 정책 기울기 방법 103
4.1 신경망을 이용한 정책 함수 구현 104
4.2 좋은 동작의 강화: 정책 기울기 알고리즘 108
4.3 OpenAI Gym 다루기 114
4.4 REINFORCE 알고리즘 117
요약 125
CHAPTER 5 좀 더 어려운 문제 풀기: 행위자-비평자 모형 127
5.1 가치 함수와 정책 함수의 결합 129
5.2 분산 훈련 135
5.3 이익 행위자-비평자 141
5.4 N-단계 행위자-비평자 151
요약 157
PART I I 더 높은 곳을 향하여 159
CHAPTER 6 또 다른 최적화 방법: 진화 알고리즘 161
6.1 강화학습의 또 다른 접근 방식 162
6.2 진화를 이용한 강화학습 163
6.3 CartPole을 위한 유전 알고리즘 172
6.4 진화 알고리즘의 장단점 180
6.5 규모가변적 대안으로서의 진화 알고리즘 182
6.5.6 기울기 기반 접근 방식의 규모 확장 189
요약 189
CHAPTER 7 모든 가능성의 탐색: 분포 심층 Q 신경망 191
7.1 기댓값 Q 학습의 문제점 192
7.2 다시 살펴보는 확률과 통계 197
7.3 벨먼 방정식 204
7.4 분포 Q 학습 206
7.5 확률분포의 비교 219
7.6 가상의 데이터에 대한 분포 DQN 225
7.7 분포 DQN을 이용한 아타리 프리웨이 학습 231
요약 237
CHAPTER 8 호기심 주도 탐험 239
8.1 예측 부호화를 이용한 희소 보상 문제 해결 241
8.2 역방향 동역학 예측 244
8.3 슈퍼 마리오브라더스 환경 설정 247
8.4 Q 신경망 전처리 250
8.5 Q 신경망과 정책 함수 설정 253
8.6 ICM(내재적 호기심 모듈) 257
8.7 그 밖의 내재적 보상 메커니즘들 271
요약 274
CHAPTER 9 다중 에이전트 강화학습 277
9.1 단일 에이전트에서 다중 에이전트로 278
9.2 이웃 Q 학습 282
9.3 1차원 이징 모형 286
9.4 평균장 Q 학습과 2차원 이징 모형 298
9.5 혼합 협조-경쟁 게임 309
요약 323
CHAPTER 10 해석 가능한 강화학습: 주의 모형과 관계 모형 325
10.1 주의와 관계 편향을 이용한 기계학습 해석성 개선 326
10.2 주의 메커니즘을 이용한 관계 추론 330
10.3 MNIST 이미지 분류를 위한 자가 주의 모형 구현 342
10.4 다중 헤드 주의 모형과 관계 DQN 356
10.5 이중 Q 학습 365
10.6 훈련과 주의 시각화 367
요약 376
CHAPTER 11 결론: 돌아보기와 내다보기 379
11.1 핵심 정리 380
11.2 심층 강화학습 분야의 미개척 주제들 382
11.3 마치며 386
APPENDIX A 수학, 심층학습, PyTorch 387
A.1 선형대수 388
A.2 미적분 390
A.3 심층학습 396A.4 PyTorch 397
참고문헌 402
찾아보기 406
책속에서
이 책을 출간하는 시점에서 본문에 수록된 모든 예제 코드는 잘 작동함이 확인된 것이다. 그러나 심층학습 분야와 관련 라이브러리들이 빠르게 발전하는 만큼, 언제까지라도 예제 코드가 의도대로 작동하리라는 보장은 없다. 본문의 예제 코드는 또한 프로젝트가 돌아가는 데 필요한 최소한의 형태로만 작성된 것일 뿐이므로, 원서 깃허브 저장소 https://mng.bz/JzKp에 있는 좀 더 완전한(그리고 갱신된) 소스 코드를 참고하길 강력히 권한다.
이 책은 독자가 심층학습에 관한 기본 지식을 어느 정도 갖추고 있다고 가정하지만, 재미있고 유익한 강화학습 기법들을 배우는 과정에서 여러분의 심층학습 관련 기술도 더욱 제련될 것이다. 좀 더 어려운 프로젝트들을 해결하기 위해서는 심층학습의 최신 성과 몇 가지도 동원할 필요가 있다. 이를테면 GAN(생성 대립 신경망 또는 생성적 적대 신경망), 진화적 방법들, 메타 학습, 전이학습이 그런 예이다. 물론 이들은 모두 독자의 추후 학습 능력을 증진한다는 기본적인 목적하에서 언급되는 것일 뿐, 그런 최신 성과의 기술적인 세부 사항에 초점들을 두지는 않는다.
실망스럽지만 흥미로운 결과이다. 신경망이 선택한 이동 동작들을 자세히 살펴보기 바란다. 플레이어는 목표에서 오른 쪽으로 몇 타일 떨어진 곳에서 출발한다. 플레이어가 게임 플레이 방법을 정말로 알고 있다면 그냥 왼쪽으로 직진해서 목표에 도달했을 것이다. 그러나 플레이어는 정적 모드에서처럼 아래로 내려가기 시작한다. 이 결과를 보면 신경망이 훈련에 사용한 정적 모드의 게임 플레이를 그냥 암기했을 뿐, 배운 것을 일반화하지는 못했다고 봐야 할 것이다.




















