logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

x의 즐거움

x의 즐거움

(인생을 해석하고 지성을 자극하는 수학 여행)

스티븐 스트로가츠 (지은이), 이충호 (옮긴이)
웅진지식하우스
15,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
13,500원 -10% 2,500원
750원
15,250원 >
13,500원 -10% 2,500원
카드할인 10%
1,350원
14,650원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 10,500원 -10% 520원 8,930원 >

책 이미지

x의 즐거움
eBook 미리보기

책 정보

· 제목 : x의 즐거움 (인생을 해석하고 지성을 자극하는 수학 여행)
· 분류 : 국내도서 > 과학 > 수학 > 쉽게 배우는 수학
· ISBN : 9788901165813
· 쪽수 : 360쪽
· 출판일 : 2014-07-14

책 소개

<뉴욕 타임스> 독자들이 환호한 전대미문의 수학 칼럼. 하버드와 MIT 학생들이 영화배우보다 더 환호하는 괴짜 수학자 스티븐 스트로가츠. <뉴욕 타임스>는 이 기발한 천재에게 수학 칼럼을 연재해달라고 요청한다.

목차

추천사_ 스티븐 스트로가츠의 수학세계 _ 김민형(옥스퍼드 대학 수학과 교수)
머리말_ 유치원 산수부터 수학 지식의 변경까지

제1부 이걸 아는 순간 인생이 달라진다 : 수

01 생선에서 무한까지 | “생선, 생선, 생선, 생선, 생선, 생선!” 과 “생선 6!”의 차이
02 돌멩이 집단 | 만약 숫자가 돌멩이라면
03 내 적의 적 | 음수와 양수의 불편한 진실
04 교환법칙 | 곱셈 속에 숨겨진 인생의 실마리
05 나눗셈에 대한 불만 | 처음 만나는 수학의 벽을 넘으려면
06 자리가 값을 결정하다 | 0과 자리값이 불러온 혁명

제2부 원인과 결과, 투여와 반응, 세계는 어떻게 이루어져 있나 : 관계

07 x의 즐거움 | 수학이라는 언어와의 만남
08 근을 찾아서 | 복소수를 찾는 여정
09 넘쳐흐르는 욕조의 비밀 | 문장제의 함정 뛰어넘기
10 근의 공식 | 정사각형으로 이해하는 근의 공식
11 함수, 수학자의 필수 도구 | 무엇이든 변환하는 수학 연장통

제3부 눈을 즐겁게 하는 새로운 발견 : 형태

12 정사각형의 춤 | 피타고라스의 정리가 그리도 아름다운 이유
13 기하학의 증명 | 뉴턴과 스피노자가 따라 한 진리 증명법
14 원뿔곡선 가족 | 원, 타원, 포물선이 들려주는 이야기
15 사인파의 비밀 | 세상 모든 것 속에 있는 사인파
16 극한까지 나아가다 | 아르키메데스가 상상한 무한 속의 원주율

제4부 수학이 가진 경이로운 힘 : 변화

17 변화를 다루는 미적분학 | 가장 편한 길로 가려면
18 얇게 썰어서 합하는 방법 | 합리적인 예측을 돕는 적분의 힘
19 e에 관한 모든 것 | 무리수 e에게 연애 상담 요청
20 사랑의 미분방정식 | 밀고 당기는 연인들의 카오스 역학
21 빛의 본질 | 스마트한 움직임을 위한 벡터미적분학

제5부 어지러운 삶에 영감을 주세요 : 데이터

22 지금 무엇이 정상적인가 | 통계학이 지닌 정치적 속성
23 조건부확률 | 직관과 상식의 함정에 빠지지 않는 비결
24 인터넷 검색의 비밀 | 자기들끼리 인기투표를 하는 구글

제6부 알려진 것과 알려지지 않은 것 : 경계

25 가장 외로운 수 | 쓸쓸해서 더 신비로운 소수 이야기
26 매트리스 수학 | 침대 매트리스를 뒤집는 가장 수학적인 방법
27 뫼비우스의 띠 | 고무처럼 늘어나는 위상수학 엿보기
28 구면기하학과 미분기하학 | 지구 위의 최단 거리를 찾아주는 기하학
29 해석학 | 수학이 병에 걸렸을 때 찾는 치료법
30 힐베르트 호텔 | 무한 명의 손님과 무한 개의 호텔방

저자소개

스티븐 스트로가츠 (지은이)    정보 더보기
코넬대학교 응용수학과의 슈르만(Schurman) 교수다. MIT 최고 강의상, 일반 대중과의 수학 소통에 대한 평생 공로상, 미국 예술 과학 아카데미 회원 등의 영예를 안았다. 다양한 비선형 시스템에 대한 그의 연구는 「Scientific American」, 「Nature」, 「Discover」, 「Business Week」, 「The New York Times」 등에 소개됐다.
펼치기
이충호 (옮긴이)    정보 더보기
서울대학교 사범대학 화학교육과를 졸업하고, 교양 과학과 인문학 분야 번역가로 활동하고 있다. 2001년 《신은 왜 우리 곁을 떠나지 않는가》로 제20회 한국과학기술도서 번역상을 수상했다. 옮긴 책으로 《불안 세대》, 《차이에 관한 생각》, 《오리진》, 《진화심리학》, 《사라진 스푼》, 《다시 쓰는 수학의 역사》, 《인간이 되다》, 《천 개의 뇌》, 《x의 즐거움》, 《도도의 노래》 등 다수가 있다.
펼치기

책속에서

험프리는 주문을 자세히 듣고 주방에 그 주문을 소리쳐 알려준다. “생선, 생선, 생선, 생선, 생선, 생선!” 그것을 보고 어니는 6이라는 수가 얼마나 편리한지 깨닫는다. 어린이는 이 이야기를 통해 수가 얼마나 편리한 것인지 배운다. 펭귄 수만큼 ‘생선’을 계속 외치기보다는 6이라는 수를 사용하면 훨씬 편리하기 때문이다. -22~23쪽

또 한 가지 미묘한 점은 수는 (이 점에서는 다른 수학 개념들도 모두) 나름의 생명을 갖고 있다는 사실이다. 우리는 수를 마음대로 통제할 수 없다. 수는 우리 마음속에 존재하지만, 수가 무엇을 의미하는지 정하고 나면, 우리는 수의 행동에 간섭할 수가 없다. 수는 나름의 법칙을 따르고, 나름의 속성과 개성과 서로 결합하는 방식이 있으며, 우리는 그저 지켜보고 이해하려는 노력만 할 수 있을 뿐 아무런 영향도 미칠 수 없다. 이 점에서 수는 기묘하게도 이 세계의 물질인 원자와 별을 연상시키는데, 원자와 별도 우리의 통제에서 벗어나는 법칙을 따르기 때문이다. 다만, 이것들은 우리의 마음 밖에 존재한다. -24쪽

일단 깊이 생각하기 시작하면, 곱셈은 실제로 상당히 미묘하다. 용어부터 그렇다. ‘7 곱하기 3(seven times three)’은 ‘7을 세 번 더하는 것’일까, 아니면 ‘3을 일곱 번 더하는 것’일까? -43쪽

무엇보다도 자리값 수 체계를 사용하면 보통 사람들도 셈을 배울 수 있다. 몇 가지 사실 ? 구구단과 덧셈에서 그에 해당하는 규칙 ? 만 알면 된다. 이것들만 알면 나머지는 알 필요가 전혀 없다. -63쪽

미지수의 값을 구해야 하는 상황은 아주 많다. 갑상선 종양의 크기를 줄이려면, 방사선을 얼마나 쬐야 할까? 연 5% 고정 금리 조건으로 받은 20만 달러의 대출금을 30년 동안 갚으려면, 매달 얼마씩 내야 할까? 로켓이 지구의 중력을 뿌리치고 탈출하려면, 얼마나 빠른 속도로 날아야 할까? -97쪽

종이를 일곱 번이나 여덟 번 이상 접기 힘든 이유4도 이 때문이다. 한 번 접을 때마다 종이 뭉치의 두께는 약 두 배씩 증가하면서 지수함수적으로 증가한다. 반면에 종이 뭉치의 길이는 매번 절반으로 줄어들므로, 지수함수적으로 빠르게 ‘감소’한다. -110~111쪽

우리가 음악을 들을 때 뇌도 이와 비슷한 마술을 보여준다. 음계를 이루는 각 음 ? 도, 레, 미, 파, 솔, 라, 시, 도 ? 의 진동수는 우리 귀에 똑같은 단계씩 증가하는 것처럼 들린다. 하지만 객관적으로는 그 진동수는 ‘배수 단위’로 증가한다. 따라서 우리는 소리의 음을 로그값으로 인식하는 셈이다. - 112쪽

내 직감적 판단(솔직하게 말하면, 나도 개인적으로 기하학을 아주 좋아한다)으로는 사람들이 기하학을 좋아하는 이유는 기하학이 논리와 직관을 ‘결합’시키기 때문인 것 같다. 좌뇌와 우뇌를 동시에 사용할 때 우리는 큰 만족감을 얻는다. -117쪽

아르키메데스는 미적분학의 기초를 놓은 것 외에도 근사와 반복의 위력을 보여주었다. ... 이 덕분에 생물공학에서부터 월스트리트와 인터넷에 이르기까지 현대 생활의 모든 측면에서 맞닥뜨리는 문제들을 푸는 데 컴퓨터를 활용할 수 있게 되었다. 이 모든 경우에 사용되는 기본 전략은 극한값으로 존재하는 정답에 수렴하는 일련의 근사를 찾아내는 것이다. 이 방법이 우리를 어디로 안내할지는 아무도 모른다. -166~165쪽

최선의 전략은 아닐지라도 좋은 전략이 한 가지 있다. 그것은 연애 인생을 이등분하는 것이다. 첫 번째 절반의 상대와는 그냥 연애만 즐기되, 두 번째 절반의 상대를 사귈 때에는 진지한 자세로 접근한다. 그리고 그때까지 만난 사람들보다 더 나은 사람을 만나면, 망설일 것 없이 그 사람을 선택하면 된다. 이 전략을 사용하면, 최선의 상대를 선택할 확률이 최소한 25%는 된다. 그 이유는 다음과 같다. 두 번째 연애 인생에서 최선의 상대를 만날 확률은 50 대 50이고, 첫 번째 연애 인생에서 차선의 상대를 만날 확률도 50 대 50이다. 만약 실제로 이 두 가지 사건이 모두 일어난다면(그 확률은 25%가 된다), 여러분은 진정한 사랑을 만나게 될 것이다. -193~194쪽

춤을 배우려는 사람에게 오른발과 왼발을 옮기는 방법과 순서를 알려주는 화살표가 잔뜩 표시된 다이어그램을 생각해보자. 이 화살표들이 바로 벡터이다. 화살표는 두 종류의 정보를 담고 있다. 하나는 방향(발을 어느 쪽으로 움직여야 할지)이고, 또 하나는 크기(얼마나 멀리 움직여야 할지)이다. 모든 벡터는 이와 똑같은 이중의 정보를 담고 있다. -204쪽

신체 검사장에서 군 정신과 의사는 파인만에게 검사를 위해 두 손을 내밀라고 했다. 파인만은 한 손은 손바닥을 위로, 다른 손은 손바닥을 아래로 한 채 내밀었다. 정신과 의사는 “아니, 그렇게 말고 반대로.”라고 말했다. 그러자 파인만은 두 손을 ‘동시에’ 뒤집었다. 여전히 한 손은 손바닥이 위로 향했고, 다른 손은 아래로 향했다. 파인만은 심리 게임을 시도한 게 아니었다. 그저 군론의 작은 유머를 써먹었을 뿐이다. -261쪽

한 바퀴를 돈 뒤에 크레용이 그린 선은 출발점의 ‘반대편’에 가 있었다. 이것은 첫 번째로 놀라운 사실인데, 뫼비우스의 띠 위에서는 출발점으로 돌아오려면 ‘두 바퀴’를 돌아야 한다. 그런데 갑자기 한 남자 아이가 공황 상태에 빠졌다. 크레용이 출발점으로 돌아오지 않았다는 사실을 안 순간, 그 아이는 자신이 뭔가 잘못했다고 생각했다. 원래 그렇게 되는 게 정상이고, 그 아이가 제대로 했으며, 한 바퀴 더 돌기만 하면 된다고 이야기해도, 아무 소용이 없었다. 이미 때가 늦었다. 아이는 바닥에 주저앉아 울기 시작했고, 도저히 달랠 수가 없었다. -267쪽


지금까지 내가 본 것 중 수를 처음 소개하는 방법 ―수는 무엇이며 수가 왜 필요한지 가장 명쾌하고 재미있게 설명한 것 ―으로 가장 훌륭하다고 생각하는 것은 <세서미 스트리트sesame street>의 '123 나와 함께 수를 세어보아요123 Count with Me'편이다.


이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책