logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

텐서플로로 구현하는 딥러닝과 강화학습

텐서플로로 구현하는 딥러닝과 강화학습

(Tensorflow v1.10 반영, 초보자도 쉽게 배우는)

잔카를로 자코네, 아메드 멘시, 레자울 카림 (지은이), 정사범 (옮긴이)
에이콘출판
33,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
29,700원 -10% 0원
1,650원
28,050원 >
29,700원 -10% 0원
카드할인 10%
2,970원
26,730원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

텐서플로로 구현하는 딥러닝과 강화학습
eBook 미리보기

책 정보

· 제목 : 텐서플로로 구현하는 딥러닝과 강화학습 (Tensorflow v1.10 반영, 초보자도 쉽게 배우는)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161750682
· 쪽수 : 396쪽
· 출판일 : 2017-10-30

책 소개

텐서플로를 이용해 딥러닝 프로그램을 개발하는 방법을 알려주는 소개서다. 딥러닝의 역사적 발전 과정, 최신 텐서플로 1.3과 GPU 컴퓨팅을 이용한 딥러닝 프로그램 개발 과정, 강화학습에 대한 기술적 개요 및 구현 방법 등을 배울 수 있다.

목차

1장. 딥러닝 시작하기

__머신 러닝 소개
____지도 학습
____비지도 학습
____강화 학습
__딥러닝이란 무엇인가?
____인간의 뇌는 어떻게 작동하는가?
____딥러닝의 역사
____적용 분야
__신경망
____생물학적 뉴런
____인공 신경 세포
__인공 신경망은 어떻게 학습하는가?
____역전파 알고리즘
____가중치 최적화
____확률적 경사 하강
__신경망 구조
____다층 퍼셉트론
____DNN 구조
____컨벌루션 뉴럴 네트워크
____제약 볼츠만 머신
__오토인코더
__순환 신경망
__딥러닝 프레임워크 비교
__요약

2장. 텐서플로 살펴보기

__일반 개요
____텐서플로 1.x의 새로운 기능은 무엇인가?
____텐서플로는 사람들이 사용하는 방식을 어떻게 변화시켰는가?
____텐서플로 설치 및 시작하기
__리눅스에서 텐서플로 설치하기
____플랫폼에 어떤 텐서플로를 설치해야 하는가?
__NVIDIA에서 GPU로 텐서플로를 실행하기 위한 필요 요건
____단계 1: NVIDIA CUDA 설치
____단계 2: NVIDIA cuDNN v5.1+ 설치
____단계 3: CUDA 컴퓨팅 기능 3.0+ 이 있는 GPU 카드
____단계 4: libcupti-dev 라이브러리 설치
____단계 5: Python(또는 Python3) 설치
____단계 6: PIP(또는 PIP3) 설치 및 업그레이드
____단계 7: 텐서플로 설치
__텐서플로 설치 방법
____pip로 텐서플로 설치하기
____virtualenv로 설치하기
__윈도우에서 텐서플로 설치하기
____소스를 이용해 설치하기
____윈도우에 설치하기
____텐서플로 설치를 테스트하기
__계산 그래프
__왜 계산 그래프가 중요한가?
____계산 그래프로 신경망 표현하기
__프로그래밍 모델
__데이터 모델
____랭크
____구조
____데이터 유형
____변수
____텐서 가져오기
____피드
__텐서보드
____텐서보드는 어떻게 작동하는가?
__단일 입력 뉴런 구현하기
__단일 입력 뉴런에 대한 소스 코드
__텐서플로 1.x로 마이그레이션
____업그레이드 스크립트를 사용하는 방법
____제안
____수작업 코드 업그레이드 방법
____변수
____요약 함수
____단순화한 수학 변형
____기타 변경 사항
__요약

3장. 순방향 신경망에 텐서플로 사용하기

__순방향 신경망 소개
____순방향 및 역전파
____가중치와 바이어스
____전이 함수
__자필 숫자의 분류
__MNIST 데이터 집합 살펴보기
__소프트맥스 분류기
____가시화
__텐서플로 모델을 저장하고 복구하는 방법
____모델 저장하기
____모델 복구하기
____소프트맥스 소스 코드
____소프트맥스 로더 소스 코드
__5층 신경망 구현
____가시화
____5층 신경망 소스 코드
__ReLU 분류기
__가시화
____ReLU 분류기 소스 코드
__드롭아웃 최적화
____가시화
____드롭아웃 최적화를 적용한 소스 코드
__요약

4장. 컨볼루션 신경망에 텐서플로 사용하기

__CNN 소개
__컨볼루션 뉴럴 네트워크 구조
____CNN 모델 - LeNet
__첫 번째 CNN 구축
____손으로 쓴 분류기의 소스 코드
____CNN으로 감정 인식하기
____감정 분류기 소스 코드
____여러분이 보유한 이미지로 모델 테스트하기
____소스 코드
__요약

5장. 텐서플로 오토인코더 최적화하기

__오토인코더 소개
__오토인코더 구현하기
____오토인코더에 대한 소스 코드
__오토인코더 견고성 개선하기
__노이즈 제거 오토인코더 구축하기
____노이즈 제거 오토인코더 소스 코드
__컨볼루션 오토인코더
____인코더
____디코더
____컨볼루션 오토인코더 소스 코드
__요약

6장. RNN 순환 신경망

__RNN 기본 개념
__RNN 실행 메커니즘
__RNN의 펼쳐진 버전
__그레이디언트 소멸 문제
__LSTM 네트워크
__RNN을 이용한 이미지 분류기
____RNN 이미지 분류 프로그램의 소스 코드
__양방향 RNN
____양방향 RNN 소스 코드
____텍스트 예측
____데이터 집합
____혼잡도
____PTB 모델
____예제 실행하기
__요약

7장. GPU 연산

__GPGPU 연산
__GPGPU 역사
__CUDA 구조
__GPU 프로그래밍 모델
__텐서플로 GPU 설정
____텐서플로 업데이트
__텐서플로 GPU 관리
____프로그래밍 예제
________GPU 계산을 위한 소스 코드
__GPU 메모리 관리
__복수 GPU 시스템에서 단일 GPU 할당
____소프트 배치로 GPU에 대한 소스 코드
____복수 GPU 사용하기
____복수 GPU 관리를 위한 소스 코드
__요약

8장. 고급 텐서플로 프로그래밍

__케라스 소개
____설치
__딥러닝 모델 만들기
__영화 평론 내용에 근거한 감정 분류
____케라스 무비 분류 프로그램의 소스 코드
__컨볼루션층을 추가하기
____컨볼루션층을 갖는 영화 분류기에 대한 소스 코드
__Pretty Tensor
____층 연결
________일반 모드
________순차 모드
________분기 및 조인
__숫자 분류기
____숫자 분류기용 소스 코드
__TFLearn
____TFLearn 설치
__타이타닉 생존 예측기
____타이타닉 분류기 소스 코드
__요약

9장. 텐서플로를 이용한 고급 멀티미디어 프로그래밍하기

__멀티미디어 분석 소개
__가변적인 객체 감지를 위한 딥러닝
____병목
____재학습 모델 사용
__가속화한 선형 대수학
____텐서플로의 주요 강점
____XLA를 통한 Just-In-Time 컴파일
________JIT 컴파일
________XLA의 존재와 장점
________XLA의 후드 작업
________여전히 실험적인 상태다
________지원 플랫폼
________보다 실험적인 자료
__텐서플로와 케라스
____케라스는 무엇인가?
____케라스의 효과
____비디오 질문 응답 시스템
________실행 불가능한 코드!
__안드로이드에서 딥러닝
____텐서플로 데모 예제
____안드로이드 시작하기
________구조 요구 사항
________사전 빌드한 APK.
________데모 실행
________안드로이디 스튜디오로 구현하기
________좀 더 시도해본다 - Bazel로 구축하기
__요약

10장. 강화 학습

__강화 학습의 기본 개념
__Q-러닝 알고리즘
__OpenAI Gym 프레임워크 소개
__frozenlake-v0 구현 문제
____frozenlake-v0 문제에 대한 소스 코드
__텐서플로를 사용한 Q-러닝
__Q 러닝 신경망 소스 코드
__요약

저자소개

잔카를로 자코네 (지은이)    정보 더보기
과학 및 산업 분야에서 10년 이상의 연구 프로젝트를 관리한 경험을 보유하고 있다. 미국 국립 연구 회의(National Research Council)인 C.N.R의 연구원으로 일하면서 병렬 컴퓨팅 및 과학 시각화와 관련된 프로젝트에 참여했다. 2017년 현재 우주 및 방위 분야의 소프트웨어 시스템을 개발 및 유지 관리하는 컨설팅 회사의 시스템 및 소프트웨어 엔지니어다.『Python Parallel Programming Cookbook』(Packt, 2015)과 『텐서플로 入門』(에이콘, 2016)의 저자다. https://it.linkedin.com/in/giancarlozaccone에서 그를 팔로우할 수 있다.
펼치기
잔카를로 자코네의 다른 책 >
아메드 멘시 (지은이)    정보 더보기
아일랜드 더블린(Dublin)의 트리니티 대학(Trinity College)에서 연구 엔지니어로 근무하고 있다. 머신 러닝 및 자연어 처리(NLP) 분야에서 5년 이상의 경력을 쌓았고, 컴퓨터 과학 석사 학위를 취득했다. 이집트 카이로의 헬완 대학교(Helwan University) 컴퓨터 과학과에서 조교로 경력을 쌓기 시작했다. 머신 러닝, 이미지 프로세싱, 선형 대수학, 확률 및 통계, 데이터 구조, 컴퓨터 과학을 위한 필수 수학 등과 같은 몇 가지 고급 머신 러닝 및 자연어 처리 과정을 가르쳤다. 다음으로 이집트에 있는 IST 네트웍스(IST Networks)의 산업 연구 및 개발 연구소에서 연구 과학자로 합류해 연구 업무를 수행했다. 아랍어 텍스트 음성을 위한 최첨단 시스템을 구현하는 데 관여했다. 결과적으로, 그 회사의 머신 러닝 전문가였다. 이후에 그는 골웨이 아일랜드 국립대학교의 데이터 분석 센터(Insight Center for Research)에 예측 분석 플랫폼(Predictive Analytics Platform) 구축 연구 보조원으로 참여했다. 마지막으로 더블린 대학교 트리니티 대학 리서치 엔지니어로 ADAPT 센터에 합류했다. ADAPT에서의 주된 역할은 ADAPT 내에서 수행된 연구에 기반을 둔 머신 러닝과 자연어 처리 기술을 사용한 프로토타입 및 응용 프로그램 작성이었다.
펼치기
레자울 카림 (지은이)    정보 더보기
독일 프라운호퍼(Fraunhofer)의 FIT 연구 과학자다. 독일 아헨(Aachen)의 RWTH 아헨공과대학교에서 박사 학위를 받았다. 컴퓨터 과학 학사, 석사 학위도 취득했다. 프라운호퍼 FIT에 입사하기 전에 아일랜드의 Insight Center (아일랜드 최대 규모의 데이터 분석 센터이자 세계 최대의 시맨틱 웹 연구소)의 연구원으로 일하면서 데이터 분석 업무를 맡았다. 그 전에는 한국, 인도, 베트남, 터키, 방글라데시에 위치한 삼성전자의 R&D 센터에서 리드 엔지니어, 한국의 경희대학교 데이터베이스 연구소에서 연구 조교로 일했다. 또한 방글라데시 다카의 i2SoftTechnology에서 소프트웨어 엔지니어, 비엠테크21 월드와이드(BMTech21Worldwide)에서 R&D 엔지니어로도 근무했다. 빅데이터 기술(스파크, 카프카, DC/OS, 도커, 메소스(Mesos), 제플린(Zeppelin), 하둡, 맵리듀스(MapReduce))과 딥러닝(텐서플로, DeepLearning4j, H2O-Sparking Water) 중심의 C/C++, 자바, 스칼라, R, 파이썬 알고리즘과 데이터 구조에 대한 확실한 지식을 바탕으로 연구 개발 분야에서 8년 이상의 경력을 쌓았다. 연구 관심사는 머신 러닝, 딥러닝, 시맨틱 웹, 링크 데이터, 빅데이터, 바이오 인포믹스 등이다. 팩트출판사에서 출간한 『대용량 머신 러닝과 스파크』(에이콘, 2018)와 『텐서플로로 구현하는 딥러닝과 강화학습』(에이콘, 2017)의 저자다.
펼치기
정사범 (옮긴이)    정보 더보기
의사결정과 최적화 방법론에 관심이 많다. 세상에 존재하는 다양한 데이터를 이용해 당면한 문제를 해결하는 일을 하고 있다. 다양한 책과 현장 경험을 통해 데이터 수집, 정제, 분석, 보고 방법에 대한 지식을 얻는 것에 감사하고 있다. 에이콘출판사에서 출간한 『RStudio 따라잡기』(2013), 『The R book(Second Edition) 한국어판』(2014), 『예측 분석 모델링 실무 기법』(2014), 『데이터 마이닝 개념과 기법』(2015), 『파이썬으로 풀어보는 수학』(2016), 『데이터 스토리텔링』(2016), 『R에서 객체지향 프로그래밍 사용하기』(2016), 『파이썬 프로그래밍 개론』(2016), 『산업인터넷(IIOT)과 함께하는 인더스트리 4.0』(2017), 『장고 마스터하기』(2017), 『텐서플로로 구현하는 딥러닝과 강화학습』(2017), 『머신 러닝 알고리즘』(2019)을 번역했다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책