책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161754987
· 쪽수 : 298쪽
· 출판일 : 2021-03-29
책 소개
목차
1장. 소개
1.1 본서와 부속 자료
1.2 머신러닝 모델의 종류
1.3 검증 및 테스트
1.4 데이터 정제
__일관성이 없는 기록
__원하지 않는 관측치
__중복 관측치
__특이치
__결측 데이터
1.5 베이즈 정리
__요약
__짧은 개념 질문
__연습문제
2장. 비지도학습
2.1 특성 스케일링
2.2 k - 평균 알고리즘
2.3 k 선택하기
2.4 차원의 저주
2.5 국가 위험
2.6 다른 군집화 접근 방식
2.7 주성분 분석
__요약
__짧은 개념 질문
__연습문제
3장. 지도학습: 선형과 로지스틱 회귀
3.1 선형 회귀: 한 개의 특성
3.2 선형 회귀: 여러 특성
__그래디언트 하강 알고리즘
__다항식 회귀 분석
__회귀 통계량
3.3 범주형 특성
__더미변수 함정
3.4 규제화
3.5 릿지 회귀
3.6 라쏘 회귀
3.7 일래스틱넷 회귀
3.8 주택가격 데이터 결과
3.9 로지스틱 회귀
3.10 결정 기준
3.11 신용 결정에 대한 응용
3.12 k - 최근접 이웃 알고리즘
__요약
__짧은 개념 질문
__연습문제
4장. 의사결정 트리
4.1 의사결정 트리의 성격
4.2 정보 이득 척도
4.3 신용결정에의 응용
4.4 나이브 베이즈 분류기
4.5 연속형 타깃변수
4.6 앙상블 학습
__배깅
__랜덤 포레스트
__부스팅
__요약
__짧은 개념 질문
__연습문제
5장. 지도학습: SVM
5.1 선형 SVM 분류
5.2 소프트 마진을 위한 수정
5.3 비선형 분리
5.4 연속변수 예측
__요약
__짧은 개념 질문
__연습문제
6장. 지도학습: 신경망
6.1 단일층 ANN
6.2 다층 ANN
6.3 그래디언트 하강 알고리즘
__다중 파라미터
6.4 기본방법의 변형
6.5 종료 규칙
6.6 블랙 - 숄즈 - 머튼 공식
6.7 확장
6.8 오토인코더
6.9 합성곱 신경망
6.10 순환 신경망
__요약
__짧은 개념 질문
__연습문제
7장. 강화학습
7.1 멀티암드 밴딧 문제
7.2 변화하는 환경
7.3 님 게임
7.4 시차학습
7.5 딥 Q - 러닝
7.6 응용
__요약
__짧은 개념 질문
__연습문제
8장. 자연어 처리
8.1 데이터 원천
8.2 전처리
8.3 단어 주머니 모델
8.4 나이브 베이즈 분류기의 적용
8.5 다른 알고리즘의 적용
8.6 정보 검색
8.7 다른 자연어 응용
__요약
__짧은 개념 질문
__연습문제
9장. 모델 해석성
9.1 선형회귀
9.2 로지스틱 회귀 분석
9.3 블랙박스 모델
9.4 샤플리값
9.5 라임
__요약
__간단한 개념 질문
__연습문제
10장. 금융에서의 응용
10.1 파생상품
10.2 델타
10.3 변동성 표면
10.4 변동성 표면 움직임의 이해
10.5 헷징을 위한 강화학습 사용
10.6 확장
10.7 기타 금융 애플리케이션
__요약
__짧은 개념 질문
__연습문제
11장. 사회적 이슈
11.1 데이터 보안성
11.2 편향
11.3 윤리
11.4 투명성
11.5 적대적 머신러닝
11.6 법적 이슈
11.7 인간 대 머신
__연습문제 해답
__용어 사전