logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

존 헐의 비즈니스 금융 머신러닝 2/e

존 헐의 비즈니스 금융 머신러닝 2/e

(데이터 사이언스 세계로의 초대, 2021년 세종도서 학술부문 선정도서)

존 헐 (지은이), 이기홍 (옮긴이)
에이콘출판
25,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
22,500원 -10% 0원
1,250원
21,250원 >
22,500원 -10% 0원
카드할인 10%
2,250원
20,250원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

존 헐의 비즈니스 금융 머신러닝 2/e
eBook 미리보기

책 정보

· 제목 : 존 헐의 비즈니스 금융 머신러닝 2/e (데이터 사이언스 세계로의 초대, 2021년 세종도서 학술부문 선정도서)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161754987
· 쪽수 : 298쪽
· 출판일 : 2021-03-29

책 소개

회귀분석, 로지스틱 회귀, KNN, 의사결정트리, SVM, 나이브 베이즈, 군집화, 차원축소 등의 다양한 고전적 머신러닝 기법뿐 아니라 신경망과 강화학습의 최신 기법도 최소한의 수학 지식으로 직관적으로 이해할 수 있도록 알려준다.

목차

1장. 소개
1.1 본서와 부속 자료
1.2 머신러닝 모델의 종류
1.3 검증 및 테스트
1.4 데이터 정제
__일관성이 없는 기록
__원하지 않는 관측치
__중복 관측치
__특이치
__결측 데이터
1.5 베이즈 정리
__요약
__짧은 개념 질문
__연습문제

2장. 비지도학습
2.1 특성 스케일링
2.2 k - 평균 알고리즘
2.3 k 선택하기
2.4 차원의 저주
2.5 국가 위험
2.6 다른 군집화 접근 방식
2.7 주성분 분석
__요약
__짧은 개념 질문
__연습문제

3장. 지도학습: 선형과 로지스틱 회귀
3.1 선형 회귀: 한 개의 특성
3.2 선형 회귀: 여러 특성
__그래디언트 하강 알고리즘
__다항식 회귀 분석
__회귀 통계량
3.3 범주형 특성
__더미변수 함정
3.4 규제화
3.5 릿지 회귀
3.6 라쏘 회귀
3.7 일래스틱넷 회귀
3.8 주택가격 데이터 결과
3.9 로지스틱 회귀
3.10 결정 기준
3.11 신용 결정에 대한 응용
3.12 k - 최근접 이웃 알고리즘
__요약
__짧은 개념 질문
__연습문제

4장. 의사결정 트리
4.1 의사결정 트리의 성격
4.2 정보 이득 척도
4.3 신용결정에의 응용
4.4 나이브 베이즈 분류기
4.5 연속형 타깃변수
4.6 앙상블 학습
__배깅
__랜덤 포레스트
__부스팅
__요약
__짧은 개념 질문
__연습문제

5장. 지도학습: SVM
5.1 선형 SVM 분류
5.2 소프트 마진을 위한 수정
5.3 비선형 분리
5.4 연속변수 예측
__요약
__짧은 개념 질문
__연습문제

6장. 지도학습: 신경망
6.1 단일층 ANN
6.2 다층 ANN
6.3 그래디언트 하강 알고리즘
__다중 파라미터
6.4 기본방법의 변형
6.5 종료 규칙
6.6 블랙 - 숄즈 - 머튼 공식
6.7 확장
6.8 오토인코더
6.9 합성곱 신경망
6.10 순환 신경망
__요약
__짧은 개념 질문
__연습문제

7장. 강화학습
7.1 멀티암드 밴딧 문제
7.2 변화하는 환경
7.3 님 게임
7.4 시차학습
7.5 딥 Q - 러닝
7.6 응용
__요약
__짧은 개념 질문
__연습문제

8장. 자연어 처리
8.1 데이터 원천
8.2 전처리
8.3 단어 주머니 모델
8.4 나이브 베이즈 분류기의 적용
8.5 다른 알고리즘의 적용
8.6 정보 검색
8.7 다른 자연어 응용
__요약
__짧은 개념 질문
__연습문제

9장. 모델 해석성
9.1 선형회귀
9.2 로지스틱 회귀 분석
9.3 블랙박스 모델
9.4 샤플리값
9.5 라임
__요약
__간단한 개념 질문
__연습문제

10장. 금융에서의 응용
10.1 파생상품
10.2 델타
10.3 변동성 표면
10.4 변동성 표면 움직임의 이해
10.5 헷징을 위한 강화학습 사용
10.6 확장
10.7 기타 금융 애플리케이션
__요약
__짧은 개념 질문
__연습문제

11장. 사회적 이슈
11.1 데이터 보안성
11.2 편향
11.3 윤리
11.4 투명성
11.5 적대적 머신러닝
11.6 법적 이슈
11.7 인간 대 머신

__연습문제 해답
__용어 사전

저자소개

존 헐 (지은이)    정보 더보기
토론토 대학 조셉 엘 로트만 경영대학원의 대학교수다. 이 책을 쓰기 전에 파생상품과 위험관리 분야에서 베스트셀러 3권을 썼다. 그의 책 모두 실무 적용에 초점을 두고 있으며, 저자는 저서가 실무자와 대학 시장에서 동등하게 잘 팔린다는 것을 자랑스럽게 생각한다. 그리고 그는 금융 혁신의 모든 측면에서 연구와 교육 자료를 개발하는 로트맨의 금융 혁신 연구소 핀허브의 학술 이사다. 전 세계의 많은 기업을 위해 자문해 왔고 토론토 대학의 권위 있는 노스럽 프리에 상을 포함한 많은 교수 상을 받았다.
펼치기
이기홍 (옮긴이)    정보 더보기
카네기멜론대학교에서 석사 학위를 받았고, 피츠버그대학교의 Finance Ph.D, CFA, FRM이자 금융, 투자, 경제분석전문가다. 삼성생명, HSBC, 새마을금고중앙회, 한국투자공사 등과 같은 국내 유수의 금융기관, 금융 공기업에서 자산 운용 포트폴리오 매니저로 근무했으며 현재 딥러닝과 강화학습을 금융에 접목시켜 이를 전파하고 저변을 확대하는 것을 보람으로 삼고 있다. 저서로는 『엑셀 VBA로 쉽게 배우는 금융공학 프로그래밍』(한빛미디어, 2009)이 있으며, 번역서로는 『포트폴리오 성공 운용』(미래에셋투자교육연구소, 2010), 『딥러닝 부트캠프 with 케라스』(길벗, 2017), 『프로그래머를 위한 기초 해석학』(길벗, 2018)과 에이콘출판사에서 출간한 『실용 최적화 알고리즘』(2020), 『초과 수익을 찾아서 2/e』(2020), 『자산운용을 위한 금융 머신러닝』(2021), 『실전 알고리즘 트레이딩 배우기』(2021), 『존 헐의 비즈니스 금융 머신러닝 2/e』(2021), 『퀀트 투자를 위한 머신러닝o딥러닝 알고리듬 트레이딩 2/e』(2021), 『자동머신러닝』(2021), 『금융 머신러닝』(2022) 등이 있다. 누구나 자유롭게 머신러닝과 딥러닝을 자신의 연구나 업무에 적용해 활용하는 그날이 오기를 바라며 매진하고 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책