logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

데이터 분석의 모든 것

데이터 분석의 모든 것

(입문자를 위한 개념 이해부터 정형·비정형 데이터 분석까지)

장원중, 이정인 (지은이)
아이리포
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
27,000원 -10% 0원
1,500원
25,500원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

데이터 분석의 모든 것
eBook 미리보기

책 정보

· 제목 : 데이터 분석의 모든 것 (입문자를 위한 개념 이해부터 정형·비정형 데이터 분석까지)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791197347009
· 쪽수 : 600쪽
· 출판일 : 2021-02-15

책 소개

데이터 분석은 기초 통계, R 입문에 대한 선행학습을 필요로 한다. 이 책은 데이터 분석에 꼭 필요한 기초 통계, 데이터 과학을 한 권에 담아서 데이터 분석에 지체 없이 진입하게 돕고, 데이터 분석의 큰 그림을 보여준다.

목차

Part 1. 비전공자를 위한 기초 지식(통계, R)
____Chapter 1. 기초 통계
________1.1 통계 개요
____________1.1.1 통계학의 중요 용어와 개념
____________1.1.2 통계 자료의 획득 방법
________1.2 기초 통계량과 확률
____________1.2.1 집중화 경향 대표값
____________1.2.2 분산도
____________1.2.3 확률 이론
________1.3 정규분포와 정규화
____________1.3.1 정규분포
____________1.3.2 표준화
________1.4 가설 검정
____________1.4.1 통계적 가설
____________1.4.2 가설 검정
________연습문제

____Chapter 2. R 프로그래밍
________2.1 프로그래밍 환경 만들기
____________2.1.1 프로그래밍 언어, R
____________2.1.2 R 설치하기
____________2.1.3 R Studio 설치하기
____________2.1.4 R 패키지 설치하기
________2.2 변수와 데이터 타입
____________2.2.1 변수
____________2.2.2 데이터 타입
________2.3 데이터 구조
____________2.3.1 백터
____________2.3.2 매트릭스(행렬)
____________2.3.3 데이터프레임
____________2.3.4 배열
____________2.3.5 리스트
________2.4 R 기초 프로그래밍
____________2.4.1 연산
____________2.4.2 흐름 제어문
____________2.4.3 함수
____________2.4.4 유용한 함수와 상수
________2.5 R을 이용한 데이터 조작 방법
____________2.5.1 데이터의 대략적인 특징 파악에 유용한 함수
____________2.5.2 외부 파일 읽기
____________2.5.3 데이터 추출
____________2.5.4 데이터 구조 변경
________연습문제


Part 2. 데이터 마트와 통계 분석
____Chapter 3. 탐색적 데이터 분석 개요
________3.1 탐색적 데이터 분석 개요
____________3.1.1 데이터 대표값 탐색
____________3.1.2 데이터 분산도 탐색
____________3.1.3 데이터 분포 탐색
____________3.1.4 변수 간 관계 탐색
________연습문제

____Chapter 4. 데이터 준비(전처리)
________4.1 데이터 전처리
____________4.1.1 데이터 변환, 처리
____________4.1.2 결측값 처리
____________4.1.3 이상값 검색
____________4.1.4 데이터 정규화
________4.2 차원 축소
____________4.2.1 차원 축소의 필요성
____________4.2.2 주성분분석
____________4.2.3 요인분석
________4.3 변수 선택
____________4.3.1 변수 선택 방법
____________4.3.2 상관계수
____________4.3.3 카이제곱검정
____________4.3.4 0에 가까운 분산
________연습문제

____Chapter 5. 통계 기반 데이터 분석
________5.1 기술 통계와 추론 통계
____________5.1.1 기술 통계
____________5.1.2 추론 통계
________5.2 상관분석
____________5.2.1 분석 방법
____________5.2.2 상관계수 검정
________5.3 선형회귀분석
____________5.3.1 단순선형회귀
____________5.3.2 다중선형회귀
____________5.3.3 모델 진단 그래프
____________5.3.4 회귀분석 모델의 체크사항
________5.4 시계열분석
____________5.4.1 시계열 데이터 개요
____________5.4.2 정상성
____________5.4.3 비정상 시계열을 정상 시계열로 전환하는 방법
____________5.4.4 시계열 모델
________5.5 주성분분석
____________5.5.1 주성분분석 개요
____________5.5.2 주성분분석 과정 설명
____________5.5.3 주성분분석 목적
____________5.5.4 주성분분석의 예
____________5.5.5 주성분분석 해석
____________5.5.6 적절한 주성분 개수 선택법
________연습문제


Part 3. 정형 데이터 마이닝
____Chapter 6. 분류분석
________6.1 데이터 마이닝
____________6.1.1 데이터 마이닝의 개념
____________6.1.2 데이터 마이닝의 대표적 기능
____________6.1.3 데이터 마이닝 추진 단계
____________6.1.4 분류분석의 주요 모델
________6.2 의사결정나무
____________6.2.1 의사결정나무 모델의 개념
____________6.2.2 분류 변수와 분류 기준값의 선택 방법
____________6.2.3 의사결정나무의 구조
____________6.2.4 의사결정나무 분석 예제(rpart() 함수)
____________6.2.5 의사결정나무 분석 예제(ctree() 함수)
________6.3 로지스틱 회귀
____________6.3.1 로지스틱 회귀 모델의 개념
____________6.3.2 로지스틱 회귀 모델 예제(glm() 함수)
________6.4 인공신경망
____________6.4.1 인공신경망 모델의 개념
____________6.4.2 단층신경망
____________6.4.3 다층신경망
____________6.4.4 피드포워드신경망
____________6.4.5 인공신경망 분석 예제(nnet() 함수)
____________6.4.6 인공신경망 분석 예제(neuralnet() 함수)
________6.5 앙상블
____________6.5.1 앙상블 모델의 개념
____________6.5.2 배깅과 분석 예제(bagging() 함수)
____________6.5.3 부스팅과 분석 예제(adabag::boosting() 함수)
____________6.5.4 랜덤 포레스트와 분석 예제(randomForest() 함수)
________6.6 서포트 벡터 머신
____________6.6.1 서포트 벡터 머신 모델의 개념
____________6.6.2 서포트 벡터 머신 분석 예제(ksvm() 함수)
____________6.6.3 서포트 벡터 머신 분석 예제(svm() 함수)
________6.7 나이브 베이즈
____________6.7.1 나이브 베이즈 모델의 개념
____________6.7.2 나이브 베이즈 분석 예제(naiveBayes() 함수)
________6.8 k-최근접 이웃
____________6.8.1 k-최근접 이웃 모델의 개념
____________6.8.2 k-최근접 이웃 분석 예제(knn() 함수)
____________6.8.1 k-최근접 이웃 분석 예제(kknn() 함수)
________연습문제

____Chapter 7. 분류분석 모델 평가
________7.1 정오분류표
____________7.1.1 분류분석 모델 평가를 위한 고려사항
____________7.1.2 정오분류표
____________7.1.3 신경망, 의사결정나무, 랜덤 포레스트 모델을 비교 평가하는 예제
________7.2 ROC 곡선과 AUC
____________7.2.1 ROC 곡선과 AUC의 개념
____________7.2.2 ROC 곡선과 AUC를 계산하여 모델을 평가하는 예제
____________7.2.3 세 가지 분류분석 모델의 평가를 하나의 ROC 곡선으로 비교하는 예제
________7.3 이익도표와 향상도 곡선
____________7.3.1 이익도표와 향상도 곡선의 개념
____________7.3.2 이익도표와 향상도 곡선을 그린 예제
________7.4 데이터 추출 방법
____________7.4.1 홀드아웃과 홀드아웃 예제
____________7.4.2 교차검증과 교차검증 예제
____________7.4.3 붓스트랩과 붓스트랩 예제
________7.5 클래스 불균형
____________7.5.1 클래스 불균형의 개념과 예제
____________7.5.2 업샘플링과 예제
____________7.5.3 다운샘플링과 예제
____________7.5.4 SMOTE와 예제
________연습문제

____Chapter 8. 군집분석과 연관분석
________8.1 군집분석
____________8.1.1 계층적 군집분석
____________8.1.2 k-평균 군집분석
____________8.1.3 혼합분포 군집분석
____________8.1.4 SOM 군집분석
____________8.1.5 SOM 군집분석 예제
________8.2 연관분석
____________8.2.1 연관규칙분석
________연습문제


Part 4. 비정형 데이터 마이닝

____Chapter 9. 텍스트 마이닝
________9.1 텍스트 마이닝 개요
____________9.1.1 텍스트 마이닝의 개념
____________9.1.2 텍스트의 위계적 구조
____________9.1.3 단어 표현 방법
____________9.1.4 텍스트 마이닝의 기능
________9.2 텍스트 마이닝 기본 프로세스
____________9.2.1 텍스트 수집
____________9.2.2 텍스트 전처리
________9.3 유사도 거리
____________9.3.1 유사도 거리 함수
____________9.3.2 유사도 거리를 계산하는 예제
________9.4 워드 클라우드
____________9.4.1 워드 클라우드
________9.5 감성분석
____________9.5.1 김성분석
________9.6 카운터 기반의 단어 표현
____________9.6.1 원-핫 인코딩
____________9.6.2 백오브워드
____________9.6.3 단어 빈도-역문서 빈도
________9.7 워드 임베딩을 위한 단어 표현
____________9.7.1 워드투벡터
____________9.7.2 글로브
________연습문제

____Chapter 10. 사회연결망 분석
________10.1 사회연결망 개요
____________10.1.1 사회연결망 개념
____________10.1.2 중심성
____________10.1.3 사회연결망 예제(대통령 브리핑 486~488.txt)
________연습문제

____부록
________정답 및 해설
________참고문헌
________찾아보기

저자소개

장원중 (지은이)    정보 더보기
가톨릭관동대학교 공과대학 기술창업학과/AI융합전공교수, 빅데이터, 데이터 과학, 머신러닝, 딥러닝, 자연어 처리, 인공지능 등의 전공 교과목을 강의하고 있다. (사)글로벌경영학회 부회장, (사)한국인더스트리 4.0 협회(Intree 4.0 Forum) 위원, 중소기업기술개발 평가위원, 강원지역대학 ICT협의체 위원 등으로 활동하고 있다. 오랜 기간 데이터 분석, 컨설팅, IT 개발 등 산업현장에서 실무경험을 하였다. 숭실대학교 대학원에서 컴퓨터공학전공, 머신러닝으로 박사학위를 받았다. 저서로는 『4차 산업혁명, 새로운 제조업의 시대』, 『4차 산업혁명 어떻게 시작할 것인가』 등이 있고, 관심 연구 분야는 빅데이터, 데이터 과학, 머신러닝, 딥러닝, 인공지능, 소프트웨어 공학이다.
펼치기
이정인 (지은이)    정보 더보기
선문대학교 산학협력단 연구교수. 데이터 분석, 머신러닝, 클라우드 분야 강의를 하고 있다. 현대정보기술에서 첫 직장생활을 시작했고, 차세대 프로젝트, 성능 컨설팅, 데이터 분석 분야의 프로젝트를 수행했다. 한국생산성본부, 멀티캠퍼스, 비트교육센터 등의 교육기관, KAIST IT 아카데미와 여러 기업에서 프리랜서 전문 강사로의 경력을 가지고 있다. IT 기술 전반의 트렌드 변화 및 다른 산업과의 융합에 관심이 많다. 누구나 이해하기 쉽고, 흥미롭고, 유익하게 데이터 분석과 IT에 대해 이야기하는 것을 좋아한다. IT 분야의 최고 국가자격인 정보관리기술사와 정보시스템감리사 자격을 갖추고 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책