logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

엑셀로 배우는 머신러닝 초

엑셀로 배우는 머신러닝 초(超)입문

(AI의 얼개를 기본부터 설명한)

와쿠이 요시유키, 와쿠이 사다미 (지은이), 권기태 (옮긴이)
성안당
23,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
20,700원 -10% 0원
1,150원
19,550원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 18,400원 -10% 920원 15,640원 >

책 이미지

엑셀로 배우는 머신러닝 초
eBook 미리보기

책 정보

· 제목 : 엑셀로 배우는 머신러닝 초(超)입문 (AI의 얼개를 기본부터 설명한)
· 분류 : 국내도서 > 컴퓨터/모바일 > 오피스(엑셀/파워포인트) > 엑셀
· ISBN : 9788931556872
· 쪽수 : 248쪽
· 출판일 : 2021-02-22

책 소개

와쿠이 요시유키와 와쿠이 사다미의 ‘엑셀로 배우는’ 인공지능 시리즈의 세 번째 책인 이 책은 1편 딥러닝, 2편 순환신경망.강화학습에 이어 그보다 좀 더 범위가 큰 머신러닝을 다룬다. 저자는 AI의 시대가 다가올수록 AI 구조에 대해 잘 이해하는 것이 중요하다고 강조한다.

목차

이 책의 사용법
머리말
역자 서문

1장 머신러닝의 기본
§1 머신러닝과 AI、그리고 딥러닝

▶ AI란
▶ AI、머신러닝、딥러닝
▶ 머신러닝의 역할

§2 지도학습과 비지도학습

▶ AI를 위한 데이터
▶ 지도학습과 비지도학습, 강화학습

2장 머신러닝을 위한 기본적인 알고리즘
§1 모델의 최적화와 최소제곱법
▶ 최적화란
▶ 최소제곱법
▶ 엑셀을 이용한 최소제곱법
▶ 데이터의 크기와 파라미터의 수
▶ 엑셀 실습

§2 최적화 계산의 기본이 되는 경사하강법
▶ 경사하강법의 아이디어
▶ 근사 공식과 내적의 관계
▶ 경사하강법의 기본식
▶ 경사하강법과 사용 방법
▶ 3 변수 이상인 경우 경사하강법을 확장
▶ h의 의미와 경사하강법의 주의할 점
▶ 엑셀을 이용한 경사하강법

§3 라그랑지의 완화법과 쌍대 문제

▶ 라그랑지의 완화법
▶ 라그랑지 쌍대 문제
▶ 구체적인 계산
▶ 엑셀로 확인

§4 몬테카를로법의 기본

▶ 몬테카를로법으로 r를 산출
▶ 엑셀을 이용한 몬테카를로법

§5 유전 알고리즘 .
▶ 유전 알고리즘으로 최솟값 문제를 해결
▶ x의 후보를 골라 2진수 표시
▶ 환경에 적합한 것을 ‘선택’
▶ 우수한 개체를 만들기 위한 ‘교차’
▶ 돌연변이
▶ 이상의 3연산을 여러 번 반복
▶ 엑셀을 이용한 유전 알고리즘

§6 베이즈 정리
▶ 조건부 확률
▶ 곱셈 정리
▶ 베이즈 정리
▶ 베이즈 정리의 해석
▶ 원인의 확률
▶ 베이즈 정리의 일반화
▶ 우도, 사전확률, 사후확률
▶ 유명한 예제로 베이즈 정리를 확인
▶ 베이즈 정리는 학습을 표현
▶ 엑셀을 이용한 베이즈 정리

3장 회귀분석
§1 중회귀분석
▶ 중회귀분석
▶ 중회귀분석의 회귀방정식 이미지
▶ 회귀방정식을 구하는 방법
▶ 회귀방정식을 이용한 분석

§2 중회귀분석을 엑셀로 체험
▶ 엑셀을 이용한 회귀분석

4장 서포트 벡터 머신(SVM)
§1 서포트 벡터 머신(SVM)의 알고리즘
▶ 구체적인 예 .
▶ 마진의 최대화를 식으로 표현
▶ 쌍대 문제로 변환
▶ 계산하기 쉽도록 변형
▶ 서포트 벡터와 상수항 c 구하기

§2 서포트 벡터 머신(SVM)을 엑셀로 체험
▶ 엑셀을 이용한 SVM

5장 신경망과 딥러닝
§1 신경망 기본 단위인 뉴런
▶ 신경망과 신경망의 기본 단위인 뉴런
▶ 가중치와 임곗값, 활성화 함수 값의 의미
▶ ‘입력의 선형합’의 내적 표현
▶ 엑셀로 유닛의 동작을 재현

§2 유닛을 층별로 나열한 신경망

▶ 구체적인 예
▶ 유닛 이름과 파라미터 이름에 관한 규칙
▶ 신경망을 식으로 표현
▶ 신경망 출력의 의미
▶ 가중치와 임곗값의 결정 방법과 목적 함수
▶ 오차역전파법의 필요성
▶ 제곱오차의 식표현

§3 오차역전파법(백프로퍼게이션법)
▶ 복잡한 목적 함수
▶ 목적 함수 E의 기울기는 제곱오차 기울기의 합
▶ 유닛의 오차 δ를 도입
▶ 기울기를 유닛의 오차 d로부터 산출
▶ 출력층의 ‘유닛 오차’ jO d 를 산출
▶ 오차역전파법으로 구하는 중간층의 ‘유닛 오차 jH d

§4 오차역전파법을 엑셀로 체험
▶ 엑셀을 이용한 오차역전파법
▶ 새로운 숫자로 테스트

6장 RNN과 BPTT
§1 순환 신경망(RNN)의 구조
▶ 구체적인 예
▶ 데이터의 형식과 정답 레이블
▶ 신경망에 기억을 가지게 한 RNN
▶ 수식을 만들기 위한 준비
▶ 유닛의 입출력을 수식으로 표현
▶ 구체적인 식으로 표현
▶ 최적화를 위한 목적 함수

§2 시간 역전파(Backpropagation through time, BPTT)
▶ 유닛의 오차와 기울기
▶ 기을기의 계산식을 유도
▶ kO d , ( ) j2 H d , ( ) i 1 H d 의 관계를 점화식으로 표현

§3 BPTT를 엑셀로 체험 .
▶ 엑셀을 이용한 BPTT

7장 Q학습
§1 강화학습과 Q학습
▶ 강화학습의 대표적인 기법인 Q학습
▶ Q학습을 개미로부터 이해
▶ 머신러닝과 강화학습

§2 Q학습의 알고리즘
▶ Q학습을 구체적인 예로 이해
▶ 개미로부터 배우는 Q학습의 용어
▶ Q값
▶ Q값이 기록된 구체적인 장소
▶ Q값의 표와 개미의 대응
▶ 즉시보상
▶ Q학습의 수식에서 이용되는 기호의 의미
▶ Q값의 갱신
▶ 학습률
▶ Q학습의 기호로 다시 표현
▶ ε-greedy법으로 모험을 하는 개미
▶ 학습의 종료 조건

§3 Q학습을 엑셀로 체험
▶ 워크시트 작성 상의 유의점
▶ 엑셀을 이용한 Q학습

8장 DQN
§1 DQN의 사고방식
▶ DQN의 구조

§2 DQN의 알고리즘
▶ 개미로부터 배우는 DQN
▶ DQN의 입출력
▶ DQN의 목적 함수

§3 DQN을 엑셀로 체험
▶ 예제의 확인
▶ 신경망과 활성화 함수의 가정
▶ 최적화 도구로 해 찾기를 이용
▶ 엑셀을 이용한 DQN

9장 나이브 베이즈 분류
§1 나이브 베이즈 분류 알고리즘
▶ 베이즈 필터의 구조
▶ 나이브 베이즈 분류
▶ 구체적인 예 .
▶ 문제를 베이즈 식으로 정리
▶ 공식 준비
▶ 사전 확률의 설정
▶ 베이즈 갱신을 충분히 활용

§2 베이즈 분류를 엑셀로 체험
▶ 엑셀을 이용한 나이브 베이즈 분류

부록
§A 신경망의 훈련 데이터

§B 해 찾기의 설치 방법

§C 머신러닝을 위한 벡터의 기초 지식
▶ 벡터의 성분 표시
▶ 벡터의 내적
▶ 코시 슈바르츠 부등식

§D 머신러닝을 위한 행렬의 기초 지식
▶ 행렬이란
▶ 행렬의 합과 차, 상수배
▶ 행렬의 곱
▶ 아다마르 곱
▶ 전치행렬
▶ 식을 간결하게 만드는 행렬

§E 머신러닝을 위한 미분의 기초 지식
▶ 미분의 정의와 의미
▶ 머신러닝에서 자주 나타나는 함수의 미분 공식
▶ 미분의 성질
▶ 1변수 함수 최솟값의 필요조건
▶ 다변수 함수와 편미분
▶ 다변수 함수의 최솟값의 필요조건
▶ 연쇄법칙

§F 다변수 함수의 근사 공식
▶ 1변수 함수의 근사 공식
▶ 2변수 함수의 근사 공식
▶ 다변수 함수의 근사 공식

§G NN에서 유닛의 오차와 기울기의 관계

§H NN에서 유닛 오차의 ‘역’점화식

§I RNN에서 유닛 오차와 기울기의 관계

§J BP, BPTT에서 도움이 되는 점화식의 복습
▶ 수열의 의미와 기호
▶ 수열과 점화식

§K RNN에서 유닛 오차의 ‘역’ 점화식
▶ 식[K3]의 증명
▶ 식[K5]의 증명
▶ 식[K4]의 증명 .

§L 중회귀방정식을 구하는 방법
▶ 엑셀을 이용한 DQN

찾아보기(Index)

저자소개

와쿠이 요시유키 (지은이)    정보 더보기
1950년 도쿄 출생. 도쿄교육대학(현 쓰쿠바대학) 이학부 수학과 졸업 후 교직에 몸을 담았다. 현재 고등학교 수학 교사로 일하면서 컴퓨터를 활용한 교육법이나 통계학을 연구하고 있다. 주요 저서(공저)로 『道具としてのフーリエ解析 도구로서의 푸리에 해석』·『道具としてのベイズ統計 도구로서의 베이즈 통계』<日本実業出版社>, 『数的センスを磨く超速算術 수학적 감각을 키우는 초스피드 계산법』<実務教育出版>, 『身のまわりのモノの技術 과학잡학사전』<中経出版> 등이 있다.
펼치기
와쿠이 요시유키의 다른 책 >
와쿠이 사다미 (지은이)    정보 더보기
1952년 도쿄에서 태어나 도쿄대학 이학계 연구과 석사과정을 수료 후, 가나가와 현립고등학교에서 교사로 지내다가, 현재 과학 전문작가로 활동 중이다. 저서로 『의미를 아는 통계해석』, 『다변량해석을 안다』, 『Excel로 알 수 있는 베이즈 통계 입문』, 『곤란할 때 퍼스콤 문자해결사전』, 『생활의 과학을 아는 책』, 『퍼스콤으로 노는 수학실험』 등이 있다.
펼치기
권기태 (옮긴이)    정보 더보기
서울대학교 계산통계학과 졸업. 동 대학원에서 전산학 전공으로 이학석사 및 이학박사 학위를 취득했다. 2024년 현재 강릉원주대학교 컴퓨터공학과 교수로 재직 중이다. 주요 번역서로는 2021 세종도서 우수학술도서로 선정된 『데이터 사이언스 교과서』를 비롯하여 『엑셀로 배우는 머신러닝 초(超)입문 (AI의 얼개를 기본부터 설명한)』, 『엑셀로 배우는 순환 신경망·강화학습 초(超)입문(RNN·DQN편)』, 『엑셀로 배우는 딥러닝(AI의 구조를 쉽게 이해할 수 있는 딥러닝 초(超)입문)』, 『AI의 얼개를 기본 부터 설명한 엑셀로 배우는 머신러닝 초(超)입문』, 『만화로 쉽게 배우는 우선 이것만! 통계학』 등이 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9788931598063