책 이미지

책 정보
· 분류 : 국내도서 > 과학 > 물리학 > 쉽게 배우는 물리학
· ISBN : 9788979661583
· 쪽수 : 720쪽
· 출판일 : 2019-01-29
책 소개
목차
추천의 글
개정판을 내면서
여는 글
1부 과학과 물리학
1강 과학이란 무엇인가
과학이 우리에게 주는 의미 | 과학의 아름다움 | 과학적 사고
2강 과학적 지식
특정지식과 보편지식 | 이론 구조 | 좋은 이론 | 보편이론 체계의 예: 대칭성 깨짐 | 과학 활동의 성격
3강 과학의 발전과 시대정신
고전물리: 움직임과 빛 | 현대물리: 상대성이론과 양자역학 | 통계역학: 정보와 엔트로피 | 혼돈과 질서 | 협동현상과 떠오름 | 복잡계 현상
4강 물리학의 분야
물리학이란 무엇인가 | 물리학의 분야 | 물리학의 범위
2부 물질의 구성 요소
5강 물질과 원자
물질 개념의 변천 | 원자론 | 원자의 구성 입자 | 빛: 전자기파와 빛알
6강 기본입자와 쿼크 이론
입자와 반대입자 | 중간자와 중성미자 | 입자의 분류 | 쿼크 이론 | 기본 상호작용 | 모든 것의 이론
7강 물리법칙의 대칭성
물리법칙의 대칭성 | 시간 비대칭
3부 자연현상의 역학적 기술
8강 고전역학
동역학 | 뉴턴역학 | 에너지 | 해밀턴역학
9강 전자기이론
마당 | 맥스웰방정식과 전자기파
10강 공간과 시간
상대성원리 | 일정한 빛 빠르기 | 상대론의 기본원리와 결과
11강 특수상대성이론
로렌츠 변환 | 길이 짧아짐 | 단위의 결정 | 시간 늦춰짐과 쌍둥이 역설 | 4차원 시공간 | 질량의 늘어남 | 몇 가지 질문
12강 일반상대성이론
일반상대성원리 | 등가원리 | 굽은 공간과 비유클리드기하학 | 마당방정식 | 일반상대론 현상 | 상대론과 예술 | 몇 가지 질문
13강 양자역학
양자역학의 배경 | 양자역학의 기본 개념 | 양자역학의 형식 | 양자역학의 내용
14강 측정과 해석
측정과 고유상태 | 측정의 보기 | 이피아르 사고실험과 비국소성 | 슈뢰딩거의 고양이 | 양자역학의 해석 | 몇 가지 질문
4부 혼돈과 질서
15강 비선형동역학
혼돈과 질서: 역사적 조명 | 병참본뜨기 | 결정론적 혼돈 | 랴푸노프 지수
16강 혼돈과 질서
천체의 움직임 | 혼돈 속의 질서 | 자연과 사회에서 혼돈 | 혼돈의 의미
5부 거시현상과 엔트로피
17강 거시적 관점과 통계역학
뭇알갱이계와 거시적 기술 | 되짚기와 못되짚기 | 엔트로피 | 열과 온도 | 통계역학
18강 엔트로피
엔트로피의 의미와 정보 | 맥스웰의 악마 | 영구기관 | 엔트로피의 본성 | 엔트로피와 생태계
19강 확률과 정보
확률 | 베이스추론 | 정보 | 객관적 관점과 주관적 관점 | 양자정보 | 정보와 동역학
6부 우주의 구조와 진화
20강 관측되는 우주
우주의 이해 | 우주관의 변천 | 태양계 | 별과 은하 | 천체의 관측
21강 별과 별사이물질
천체의 거리 측정 | 별의 탄생 | 별의 생애 | 검정구멍과 중력파
22강 우주의 기원과 진화
현대 우주론의 출발 | 불어나는 우주 | 열린 우주와 닫힌 우주 | 물질과 에너지 구성 | 우주의 역사 | 예술가가 본 우주
23강 우주와 인간
시간과 우주 | 과학이 보여 주는 우주관
7부 복잡계와 통합적 사고
24강 복잡성과 고비성
복잡성 | 공간에서의 고비성: 쪽거리 | 시간에서의 고비성: 1/f 신호 | 복잡성의 기전
25강 복잡계의 물리
복잡계란 무엇인가 | 복잡계의 보기 | 정보교류동역학
26강 생명현상의 이해
물리학과 생물학 | 생물물리학의 연구 주제 | 생명이란 무엇인가 | 생명의 핵심 요소 | 생명의 단위
27강 복잡계와 통합과학
물리학과 사회과학 | 사회현상의 이론적 이해 | 복잡계와 통합적 사고
읽을거리
찾아보기
저자소개
리뷰
책속에서
과학이 주는 의미
과학은 그것을 전공하는 과학자들이 공부하면 될 텐데 과학을 전공하지 않는 우리가 왜 과학을 공부해야 할까요? 그 해답을 얻으려면 과학이 현대사회를 살아가는 우리에게 무슨 의미를 주는지 생각해 봐야 합니다.
과학의 첫 번째 의미는 과학적 사고방식입니다. 과학적 사고란 비판적이고 합리적인 사고를 말하며, 과학적 사고방식은 과학 정신이라 할 수도 있습니다. 과학의 위력이라고 하면 과학적 지식이나 그것을 특별히 기술로 응용한 것이라고 생각하기 쉽습니다. 요즘에는 그 위력과 힘을 협소하게 물질문명, 더 좁게는 무기 같은 것으로 생각합니다. 여러 해가 지났지만 미국이 이라크를 침공해서 순식간에 점령했지요. 이때 두 나라의 실질적 차이는 어느 쪽이 군사력이 강하냐 하는 것이었고, 이를 결정하는 무기들은 기술의 응용에서 나옵니다. 그런 것을 보면서 우리는 자연과학의 위력은 과학을 기술에 얼마나 잘 응용하는지에 달려 있다고 생각하기 쉽습니다. 그러나 실제 자연과학의 위력이란 기술의 응용에 있는 것이 아니라 과학적 사고에 있다고 할 수 있습니다. …
과학이 우리에게 주는 두 번째 의미는 과학을 통해서 삶의 새로운 의미를 추구할 수 있다는 점입니다. 자연과학이란 자연현상, 곧 우리 자신을 포함한 우주 전체를 탐구하는 학문입니다. 다시 말해 자연과학은 우리 자신을 포함한 우주 전체를 근원적으로 이해하려는 시도로서, 자연과학을 탐구하다 보면 인간과 우주를 더 잘 이해할 수 있게 되므로 세계관 자체가 바뀌게 됩니다. 새로운 과학적 세계관으로 생각할 수 있게 되며, 이것이 '과학이 우리 삶에 주는 새로운 의미'입니다. …
세 번째로 과학의 현실적 의미를 들 수 있겠네요. 우리는 현대사회의 구성원으로 살고 있습니다. 디포 소설에 나오는 로빈슨 크루소처럼 혼자 사는 것이 아닙니다. 이런 현대사회에서 자연과학은 아주 중대한 영향을 끼치고 있습니다. 좋든 나쁘든 말이지요. 자연과학은 현대사회를 사는 우리가 갖춰야 할 가장 기본적 소양입니다.
현대사회에서 과학 문명이 특별히 중요한 이유는 과학 지식의 이용과 관련해서 생각할 수 있습니다. 우리가 과학 지식을 올바른 방향으로 이용한다면 과학은 우리에게 풍요로운 삶을 줄 겁니다. 그러나 우리가 과학을 잘못 이용한다면 그야말로 엄청난 재앙이 될 수도 있습니다. 핵폭탄 같은 것은 본말이 전도된 과학 문명의 대표적 예라고 할 수 있는데 인류 전체를 파멸시킬 수도 있지요.
마지막으로 과학의 의미는 문화의 중요한 근간이라는 점입니다. 여러분은 문화유산이라고 하면 무엇이 생각나나요? 몇 해 전에 《나의 문화유산답사기》라는 책이 꽤 많이 읽혔지요. 문화유산이라고 하면 흔히 이런 책에서 다루는 예술품들을 생각하고 과학을 문화유산이라고 생각하지는 않는 듯합니다. 그런데 사실은 과학이야말로 인류의 가장 소중한 문화유산이라고 할 수 있습니다. 우리나라의 대표적 문화유산으로는 유네스코UNESCO가 세계 문화유산으로 지정한 서울의 종묘 등을 생각할 수 있겠네요. 유네스코가 지정한 문화유산이 또 무엇이 있죠? 수원 화성과 팔만대장경, 석굴암도 지정되어 있습니다. 이런 문화유산의 공통점은 인간의 활동을 통해 얻어진 산물이라는 점입니다.
인간은 과학 활동의 탐구 대상입니다. 과학 활동은 자연을 이해하고 해석하려는 것인데, 인간도 자연에 포함되니 당연히 과학 활동의 대상이지요. 그런데 그와 동시에, 인간은 과학 활동의 주체이기도 합니다. 자연과학은 그런 점에서 매우 특별하다고 할 수 있습니다. 인간이 과학 활동의 주체라는 면에서 보면 과학도 다른 인간 활동과 마찬가지로 문화유산이라 할 수 있습니다. 유네스코에 등재된 문화유산 중에 종묘와 함께 종묘제례악이 있지요. 문화재라면 눈에 보이는 것만 생각하기 쉬우나 무형문화재도 있지요. 인간이 만든 창작물인 과학도 음악처럼 눈에 보이지 않는 소중한 문화유산이라고 할 수 있습니다.
좋은 이론
일반적으로 어떤 현상을 설명하려고 할 때 여러 가지 이론이 있을 수 있습니다. 그러면 그중에서 어떤 이론을 선택해야 할까요? 취사선택의 기준은 무엇일까요? 위의 예에서 우리는 왜 지구중심설을 버리고 태양중심설을 택했을까요? 둘 다 현실성에서는 문제가 없는데 말이지요.
우리나라의 국보 1호는 숭례문입니다. 흥인지문은 보물 1호고요. … 일반적으로 국보가 보물보다 급이 높다고 하는데, 그렇다면 숭례문이 흥인지문보다 더 우수한가요? (숭례문은 불타 버린 어처구니없는 사건 후에 복원된 것이라서 '국보 1호'로서 의미가 있는지 모르겠습니다만.) 예술품을 보면 어떤 것은 아주 좋고, 어떤 것은 상대적으로 좀 떨어진다는 등의 평을 합니다. 물론 이러한 평의 기준이 무엇인지에 따라 논란이 있을 수 있겠지요.
이론에서도 '좋은 이론'이라는 표현을 씁니다. 이론도 다 같지는 않아서 어느 것이 더 좋은지 말하는 데 몇 가지 기준을 생각할 수 있습니다. 예술품에서 "이 작품이 저 작품보다 좋다"는 평은 어떤 뜻인가요? 고등학교에서 미술 시간에 학생들 모두 같은 풍경을 그렸는데 미술 선생님께서 어떤 학생의 그림은 좋고 어떤 학생의 그림은 그에 비해 좋지 않다고 하셨다면 그 기준이 뭘까요? 더 아름답다고 느끼는 작품을 좋게 평하셨겠지요.
좋은 이론도 마찬가지입니다. 어느 것이 더 아름다운가 하는 문제라고 할 수 있어요. 그러면 그 기준이 무엇일까요? 정확성이라든가 보편성이라든가 다산성이라든가 하는 요소들을 생각할 수 있는데 핵심적인 것 두 가지만 설명하지요. 먼저 이론에서 임의 요소가 있는데 너무 많지 않아야 합니다. 임의 요소가 너무 많으면 이론의 의미가 없어지지요. 몇 가지의 임의 요소로만 출발하되 경험과 연결할 때 최대한 넓은 관측 결과를 설명할 수 있어야 합니다. 이것이 좋은 이론의 중요한 첫째 조건입니다. 관측을 통해서 감각 경험과 연결하는 것이 이른바 실증적 검증 과정인데, 이때 가능한 한 넓은 관측 범위를 설명할 수 있어야 한다, 그러니까 보편성이 클수록 좋다는 거지요.
다른 한 가지 조건은 관측 결과를 명확히 예측할 수 있어야 합니다. 다시 말해서 좋은 이론이 되려면 일어난 일에 대해 잘 설명하고 아직 일어나지 않은 일을 예측할 수 있어야 한다는 겁니다. 이것의 핵심은 앞에서 이야기한 반증가능성이지요. 결과를 명확히 예측했는데 실제로 관측하니 예측과 다르다면 반증이 되는 겁니다. 그런데 만약에 어떤 이론이 관측 결과를 명확히 예측하지 않고 "이럴 수도 있고 저럴 수도 있다"고 한다면 반증할 수 없을 겁니다. 그런 것은 반증가능성이 없으므로 좋은 이론이 될 수 없습니다.
여러분이 앞날을 기억(예측)하는 능력이 있다는 사람들에게 가서 미래에 어떤 일이 생기겠느냐고 물어본다고 합시다. 그런 사람들은 대체로 명확하게 말하지 않지요. 알 수 없는 말을 한참 하고 이럴 수도 저럴 수도 있다고 적당히 두루뭉수리 이야기하는데 그렇게 말하면 반증할 수 없지요. 나중에 이러니까 맞았다고 하는데 다르게 했어도 맞았다고 할 수 있습니다. 이는 명확하게 예측하지 않기 때문이고, 따라서 반증가능성이 없도록 만드는 거지요. 이런 것은 과학 이론이라 할 수 없어요.
이른바 '유사과학', 더 확실하게는 '사이비과학'이라고 부르는 것들은 결국 이 두 가지 조건 중에 적어도 한 가지는 가지고 있지 못합니다. 실증적 검증이 되지 않거나 명확한 예측을 하지 못하거나 하지요. 사이비과학이냐 아니냐는 이를 잘 생각해 보면 어렵지 않게 판단할 수 있을 겁니다. 요새는 재미있게도 말로는 과학의 시대라서 여기저기마다 뒤에 과학을 붙이지요. 무슨 무슨 과학이라고요. 하기야 침대도 과학이라고 했으니까요. 대표적 예를 들기는 곤란하지만 여러 해 전에 '신과학'이라는 다소 모호한 것이 있었고, 최근에는 특히 황당해서 희극적으로 들리는 '창조과학'이라는 것도 횡행하고 있는데 그런 것이 사이비과학의 범주에 들어가는지 아닌지는 이 두 가지만 냉정하게 판단해 보면 알 수 있습니다.
좋은 이론이 되려면 넓은 범위의 관측 결과를 설명할 수 있어야 합니다. 다시 말해 보편성이 있어야 하는데, 따라서 과학의 발전이란 더 보편적인 이론 체계를 구성하는 과정이라 할 수 있겠네요. 고전역학의 역사를 살펴보면, 갈릴레이의 낙하의 법칙이라든가 관성의 문제 등에서 태동해서 이런 것들을 더 보편적인 이론 체계로 확장한 것이 뉴턴의 고전역학 체계라고 할 수 있습니다. 그런데 이를 더 보편적인 이론 체계로 확장한 것이 있습니다. 여러분도 많이 들어 봤을 아인슈타인의 상대성이론입니다. 그러니까 갈릴레이에서 뉴턴으로, 그리고 아인슈타인으로 가는 것이 바로 더 보편적인 이론 체계를 찾아가는 과정이라고 할 수 있지요.
아인슈타인의 상대성원리
고전물리학의 두 가지 요소로, 움직임을 다루는 고전역학과 전기와 자기, 빛을 다루는 전자기학을 지적했습니다. 그럼 전자기 현상은 어떨까요? 전자기 현상을 기술하는 법칙도 관측자에 따라 변하지 않고 같으면 좋겠지요. 다시 말해서 갈릴레이의 상대성원리가 역학 법칙뿐 아니라 전자기 법칙에도 적용되기를 바라게 됩니다. 그러면 더 보편적인 이론 체계를 추구하는 물리학자는 행복하다고 느끼지요.
실제로 어떤지 살펴볼까요. 간단한 전자기 현상을 생각해 봅시다. 정지해 있는 전하, 곧 전기를 띤 알갱이가 있으면 전기마당이 생깁니다. 여기에 다른 전하를 갖다 놓으면 전기의 부호에 따라 끌어당기거나 밀치게 되지요. 정지해 있는 전하가 자신의 주위 공간에 전기마당을 형성했고, 다른 전하는 그 전기마당에 놓여 있으므로 전기력을 받는다고 설명합니다. 한편 전하가 움직이는 경우, 곧 전류가 있으면 자기마당이 생깁니다. 이는 전기 이음줄에 전류를 흘려서 만드는 전자석을 보면 알 수 있지요. 전자석은 자기마당을 만들어 내고, 자기마당에 놓인 다른 자석 또는 전류에 자기력을 미치게 됩니다. 여기서 전하가 움직인다고 해서 전기마당이 생기지 않는 것은 아닙니다. 전기마당은 어차피 생기는데 움직이면 거기에 더해져서 자기마당이 또 생기므로, 결국 힘이 달라집니다.
이러한 추론은 매우 중요한 결론을 가져옵니다. 이 지우개가 전하라고 하면, 여러분이 볼 때는 이것이 정지해 있으니까 주위에 전기마당만 만들게 됩니다. 그런데 내가 움직이면서 보면 이 지우개는 뒤로 움직이니까 전류가 흐르는 거지요. 그러면 자기마당이 생깁니다. 그러니 여러분이 보면 전기마당만 있는데, 움직이면서 보는 나에게는 전기마당뿐 아니라 자기마당도 나타납니다. 놀랍게도 전자기 현상의 기술에서는 서로 등속운동을 하는 두 관측자가 다르다는 거네요. (예컨대 전자기마당에서 움직이는 전하가 받게 되는 전자기력, 곧 로렌츠힘이 두 관측자에게 다르게 나타납니다.) 이에 따라 갈릴레이의 상대성원리가 역학 법칙에는 성립하지만 전자기 법칙에는 성립하지 않는다고 결론을 내릴 수밖에 없습니다.
"그런가 보다" 할 수도 있겠지만, 물리학자는 이런 상황에서는 행복하지 못합니다. 보편성이 없이 이것과 저것이 다르다는 결과는 우리가 자연현상에 대한 해석을 잘못하고 있는 것이 아닌가 하고 반성하게 만들지요. 그래서 본질적으로 아예 시간과 공간 같은 기본 개념을 잘못 이해하고 시작한 것이 아닌가 하는 생각을 한 사람이 바로 아인슈타인입니다. 아인슈타인이 뛰어나다고 하는 이유는 무모할 만큼 과감하게 생각했기 때문입니다. 고전물리학 체계를 잘 이해하고 있으면 거기에 대한 선입관념이 강할 테고 본질적으로 출발이 잘못되었으리라고 생각하긴 어렵습니다. 왜냐면 고전역학이 케플러 법칙처럼 일상적인 일들을 너무나 완벽하게 해석해 냈는데 어떻게 그걸 의심할 수 있겠어요? 이건 정말 어려운 일입니다. 갈릴레이가 당시 받아들여지던 낙하의 법칙 ─ 무거운 물체가 가벼운 것보다 먼저 떨어진다는 것 ─ 을 의심한 것만큼이나 힘들지요.
아인슈타인은 기존의 시간과 공간에 대한 이해에는 근본적 오류가 있고, 우리가 시간과 공간을 제대로 파악한다면 역학 법칙만이 아니라 전자기 법칙도 관측자에 관계없이 똑같으리라 생각했습니다. 그래서 "서로 등속운동 하는 관측자에게는 역학 법칙만이 아니라 전자기 법칙도 똑같다"고 전제했는데, 이는 결국 고전물리학의 모든 것이 같아야 한다는 말입니다. 따라서 요약하면 "서로 등속운동 하는 관측자는 동등하다"라고 표현할 수 있겠네요. 이것은 갈릴레이의 상대성원리를 확장한 것으로 아인슈타인의 상대성원리, 더 정확하게는 특수상대성원리라고 부릅니다. 동등하다는 말은 모든 자연현상의 해석이 같아야 한다는 것이며, 모든 물리법칙이 동일하다는 뜻입니다. 지금은 상대성원리라면 보통 이것을 가리키지요.